Metamath Proof Explorer


Theorem bj-clel3gALT

Description: Alternate proof of clel3g . (Contributed by BJ, 1-Sep-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion bj-clel3gALT BVABxx=BAx

Proof

Step Hyp Ref Expression
1 elisset BVxx=B
2 1 biantrurd BVABxx=BAB
3 19.41v xx=BABxx=BAB
4 2 3 bitr4di BVABxx=BAB
5 eleq2 x=BAxAB
6 5 bicomd x=BABAx
7 6 pm5.32i x=BABx=BAx
8 7 exbii xx=BABxx=BAx
9 4 8 bitrdi BVABxx=BAx