Metamath Proof Explorer


Theorem bj-csbsnlem

Description: Lemma for bj-csbsn (in this lemma, x cannot occur in A ). (Contributed by BJ, 6-Oct-2018) (New usage is discouraged.)

Ref Expression
Assertion bj-csbsnlem A/xx=A

Proof

Step Hyp Ref Expression
1 abid yy|[˙A/x]˙yx[˙A/x]˙yx
2 df-sbc [˙A/x]˙yxAx|yx
3 clelab Ax|yxxx=Ayx
4 velsn yxy=x
5 4 anbi2i x=Ayxx=Ay=x
6 5 exbii xx=Ayxxx=Ay=x
7 eqeq2 x=Ay=xy=A
8 7 pm5.32i x=Ay=xx=Ay=A
9 8 exbii xx=Ay=xxx=Ay=A
10 19.41v xx=Ay=Axx=Ay=A
11 simpr xx=Ay=Ay=A
12 eqvisset y=AAV
13 elisset AVxx=A
14 12 13 syl y=Axx=A
15 14 ancri y=Axx=Ay=A
16 11 15 impbii xx=Ay=Ay=A
17 9 10 16 3bitri xx=Ay=xy=A
18 3 6 17 3bitri Ax|yxy=A
19 1 2 18 3bitri yy|[˙A/x]˙yxy=A
20 df-csb A/xx=y|[˙A/x]˙yx
21 20 eleq2i yA/xxyy|[˙A/x]˙yx
22 velsn yAy=A
23 19 21 22 3bitr4i yA/xxyA
24 23 eqriv A/xx=A