Metamath Proof Explorer


Theorem bj-elabd2ALT

Description: Alternate proof of elabd2 bypassing elab6g (and using sbiedvw instead of the A. x ( x = y -> ps ) idiom). (Contributed by BJ, 16-Oct-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses bj-elabd2ALT.ex φAV
bj-elabd2ALT.eq φB=x|ψ
bj-elabd2ALT.is φx=Aψχ
Assertion bj-elabd2ALT φABχ

Proof

Step Hyp Ref Expression
1 bj-elabd2ALT.ex φAV
2 bj-elabd2ALT.eq φB=x|ψ
3 bj-elabd2ALT.is φx=Aψχ
4 simpr φy=Ay=A
5 2 eqcomd φx|ψ=B
6 5 adantr φy=Ax|ψ=B
7 4 6 eleq12d φy=Ayx|ψAB
8 eqeq1 x=yx=Ay=A
9 8 biimparc y=Ax=yx=A
10 9 anim2i φy=Ax=yφx=A
11 10 anassrs φy=Ax=yφx=A
12 11 3 syl φy=Ax=yψχ
13 12 sbiedvw φy=Ayxψχ
14 7 13 bibi12d φy=Ayx|ψyxψABχ
15 df-clab yx|ψyxψ
16 15 a1i φyx|ψyxψ
17 1 14 16 vtocld φABχ