Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for BJ
Extended real and complex numbers, real and complex projective lines
Identity relation (complements)
bj-elid4
Next ⟩
bj-elid5
Metamath Proof Explorer
Ascii
Unicode
Theorem
bj-elid4
Description:
Characterization of the elements of
_I
.
(Contributed by
BJ
, 22-Jun-2019)
Ref
Expression
Assertion
bj-elid4
⊢
A
∈
V
×
W
→
A
∈
I
↔
1
st
⁡
A
=
2
nd
⁡
A
Proof
Step
Hyp
Ref
Expression
1
1st2nd2
⊢
A
∈
V
×
W
→
A
=
1
st
⁡
A
2
nd
⁡
A
2
eleq1
⊢
A
=
1
st
⁡
A
2
nd
⁡
A
→
A
∈
I
↔
1
st
⁡
A
2
nd
⁡
A
∈
I
3
2
adantl
⊢
A
∈
V
×
W
∧
A
=
1
st
⁡
A
2
nd
⁡
A
→
A
∈
I
↔
1
st
⁡
A
2
nd
⁡
A
∈
I
4
fvex
⊢
2
nd
⁡
A
∈
V
5
4
inex2
⊢
1
st
⁡
A
∩
2
nd
⁡
A
∈
V
6
bj-opelid
⊢
1
st
⁡
A
∩
2
nd
⁡
A
∈
V
→
1
st
⁡
A
2
nd
⁡
A
∈
I
↔
1
st
⁡
A
=
2
nd
⁡
A
7
5
6
mp1i
⊢
A
∈
V
×
W
∧
A
=
1
st
⁡
A
2
nd
⁡
A
→
1
st
⁡
A
2
nd
⁡
A
∈
I
↔
1
st
⁡
A
=
2
nd
⁡
A
8
3
7
bitrd
⊢
A
∈
V
×
W
∧
A
=
1
st
⁡
A
2
nd
⁡
A
→
A
∈
I
↔
1
st
⁡
A
=
2
nd
⁡
A
9
1
8
mpdan
⊢
A
∈
V
×
W
→
A
∈
I
↔
1
st
⁡
A
=
2
nd
⁡
A