Metamath Proof Explorer


Theorem bj-fvsnun2

Description: The value of a function with one of its ordered pairs replaced, at the replaced ordered pair. See also fvsnun2 . (Contributed by NM, 23-Sep-2007) Put in deduction form. (Revised by BJ, 18-Mar-2023) (Proof modification is discouraged.)

Ref Expression
Hypotheses bj-fvsnun.un φG=FCAAB
bj-fvsnun2.ex1 φAV
bj-fvsnun2.ex2 φBW
Assertion bj-fvsnun2 φGA=B

Proof

Step Hyp Ref Expression
1 bj-fvsnun.un φG=FCAAB
2 bj-fvsnun2.ex1 φAV
3 bj-fvsnun2.ex2 φBW
4 dmres domFCA=CAdomF
5 inss1 CAdomFCA
6 4 5 eqsstri domFCACA
7 6 a1i φdomFCACA
8 neldifsnd φ¬ACA
9 7 8 ssneldd φ¬AdomFCA
10 1 9 2 3 bj-fununsn2 φGA=B