Metamath Proof Explorer


Theorem bj-hbaeb2

Description: Biconditional version of a form of hbae with commuted quantifiers, not requiring ax-11 . (Contributed by BJ, 12-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Assertion bj-hbaeb2 xx=yxzx=y

Proof

Step Hyp Ref Expression
1 sp xx=yx=y
2 axc9 ¬zz=x¬zz=yx=yzx=y
3 1 2 syl7 ¬zz=x¬zz=yxx=yzx=y
4 axc11r zz=xxx=yzx=y
5 axc11 xx=yxx=yyx=y
6 5 pm2.43i xx=yyx=y
7 axc11r zz=yyx=yzx=y
8 6 7 syl5 zz=yxx=yzx=y
9 3 4 8 pm2.61ii xx=yzx=y
10 9 axc4i xx=yxzx=y
11 sp zx=yx=y
12 11 alimi xzx=yxx=y
13 10 12 impbii xx=yxzx=y