Metamath Proof Explorer


Theorem bj-hbaeb2

Description: Biconditional version of a form of hbae with commuted quantifiers, not requiring ax-11 . (Contributed by BJ, 12-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Assertion bj-hbaeb2 x x = y x z x = y

Proof

Step Hyp Ref Expression
1 sp x x = y x = y
2 axc9 ¬ z z = x ¬ z z = y x = y z x = y
3 1 2 syl7 ¬ z z = x ¬ z z = y x x = y z x = y
4 axc11r z z = x x x = y z x = y
5 axc11 x x = y x x = y y x = y
6 5 pm2.43i x x = y y x = y
7 axc11r z z = y y x = y z x = y
8 6 7 syl5 z z = y x x = y z x = y
9 3 4 8 pm2.61ii x x = y z x = y
10 9 axc4i x x = y x z x = y
11 sp z x = y x = y
12 11 alimi x z x = y x x = y
13 10 12 impbii x x = y x z x = y