Metamath Proof Explorer


Theorem bj-moeub

Description: Uniqueness is equivalent to existence being equivalent to unique existence. (Contributed by BJ, 14-Oct-2022)

Ref Expression
Assertion bj-moeub *xφxφ∃!xφ

Proof

Step Hyp Ref Expression
1 moeu *xφxφ∃!xφ
2 euex ∃!xφxφ
3 impbi xφ∃!xφ∃!xφxφxφ∃!xφ
4 2 3 mpi xφ∃!xφxφ∃!xφ
5 biimp xφ∃!xφxφ∃!xφ
6 4 5 impbii xφ∃!xφxφ∃!xφ
7 1 6 bitri *xφxφ∃!xφ