Metamath Proof Explorer


Theorem bj-nfexd

Description: Variant of nfexd . (Contributed by BJ, 25-Dec-2023)

Ref Expression
Hypotheses bj-nfald.1 φ y φ
bj-nfald.2 φ x ψ
Assertion bj-nfexd φ x y ψ

Proof

Step Hyp Ref Expression
1 bj-nfald.1 φ y φ
2 bj-nfald.2 φ x ψ
3 df-ex y ψ ¬ y ¬ ψ
4 2 nfnd φ x ¬ ψ
5 1 4 bj-nfald φ x y ¬ ψ
6 5 nfnd φ x ¬ y ¬ ψ
7 3 6 nfxfrd φ x y ψ