Metamath Proof Explorer


Theorem bj-nnfbit

Description: Nonfreeness in both sides implies nonfreeness in the biconditional. (Contributed by BJ, 2-Dec-2023) (Proof modification is discouraged.)

Ref Expression
Assertion bj-nnfbit Ⅎ'xφℲ'xψℲ'xφψ

Proof

Step Hyp Ref Expression
1 bj-nnfim Ⅎ'xφℲ'xψℲ'xφψ
2 bj-nnfim Ⅎ'xψℲ'xφℲ'xψφ
3 2 ancoms Ⅎ'xφℲ'xψℲ'xψφ
4 bj-nnfan Ⅎ'xφψℲ'xψφℲ'xφψψφ
5 1 3 4 syl2anc Ⅎ'xφℲ'xψℲ'xφψψφ
6 dfbi2 φψφψψφ
7 6 bicomi φψψφφψ
8 7 bj-nnfbii Ⅎ'xφψψφℲ'xφψ
9 5 8 sylib Ⅎ'xφℲ'xψℲ'xφψ