Metamath Proof Explorer


Theorem bj-nnfor

Description: Nonfreeness in both disjuncts implies nonfreeness in the disjunction. (Contributed by BJ, 19-Nov-2023) In classical logic, there is a proof using the definition of disjunction in terms of implication and negation, so using bj-nnfim , bj-nnfnt and bj-nnfbi , but we want a proof valid in intuitionistic logic. (Proof modification is discouraged.)

Ref Expression
Assertion bj-nnfor Ⅎ'xφℲ'xψℲ'xφψ

Proof

Step Hyp Ref Expression
1 df-bj-nnf Ⅎ'xφxφφφxφ
2 df-bj-nnf Ⅎ'xψxψψψxψ
3 19.43 xφψxφxψ
4 pm3.48 xφφxψψxφxψφψ
5 3 4 biimtrid xφφxψψxφψφψ
6 pm3.48 φxφψxψφψxφxψ
7 19.33 xφxψxφψ
8 6 7 syl6 φxφψxψφψxφψ
9 5 8 anim12i xφφxψψφxφψxψxφψφψφψxφψ
10 9 an4s xφφφxφxψψψxψxφψφψφψxφψ
11 1 2 10 syl2anb Ⅎ'xφℲ'xψxφψφψφψxφψ
12 df-bj-nnf Ⅎ'xφψxφψφψφψxφψ
13 11 12 sylibr Ⅎ'xφℲ'xψℲ'xφψ