Metamath Proof Explorer


Theorem bj-pr1eq

Description: Substitution property for pr1 . (Contributed by BJ, 6-Apr-2019)

Ref Expression
Assertion bj-pr1eq A=Bpr1A=pr1B

Proof

Step Hyp Ref Expression
1 bj-projeq2 A=BProjA=ProjB
2 df-bj-pr1 pr1A=ProjA
3 df-bj-pr1 pr1B=ProjB
4 1 2 3 3eqtr4g A=Bpr1A=pr1B