Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for BJ
Set theory
Tuples of classes
bj-pr2un
Next ⟩
bj-pr2val
Metamath Proof Explorer
Ascii
Unicode
Theorem
bj-pr2un
Description:
The second projection preserves unions.
(Contributed by
BJ
, 6-Apr-2019)
Ref
Expression
Assertion
bj-pr2un
⊢
pr2
A
∪
B
=
pr2
A
∪
pr2
B
Proof
Step
Hyp
Ref
Expression
1
bj-projun
⊢
1
𝑜
Proj
A
∪
B
=
1
𝑜
Proj
A
∪
1
𝑜
Proj
B
2
df-bj-pr2
⊢
pr2
A
∪
B
=
1
𝑜
Proj
A
∪
B
3
df-bj-pr2
⊢
pr2
A
=
1
𝑜
Proj
A
4
df-bj-pr2
⊢
pr2
B
=
1
𝑜
Proj
B
5
3
4
uneq12i
⊢
pr2
A
∪
pr2
B
=
1
𝑜
Proj
A
∪
1
𝑜
Proj
B
6
1
2
5
3eqtr4i
⊢
pr2
A
∪
B
=
pr2
A
∪
pr2
B