Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for BJ
Set theory
Set theory: elementary operations relative to a universe
bj-reabeq
Next ⟩
bj-disj2r
Metamath Proof Explorer
Ascii
Unicode
Theorem
bj-reabeq
Description:
Relative form of
eqabb
.
(Contributed by
BJ
, 27-Dec-2023)
Ref
Expression
Assertion
bj-reabeq
⊢
V
∩
A
=
x
∈
V
|
φ
↔
∀
x
∈
V
x
∈
A
↔
φ
Proof
Step
Hyp
Ref
Expression
1
dfrab3
⊢
x
∈
V
|
φ
=
V
∩
x
|
φ
2
1
eqeq2i
⊢
V
∩
A
=
x
∈
V
|
φ
↔
V
∩
A
=
V
∩
x
|
φ
3
nfcv
⊢
Ⅎ
_
x
A
4
nfab1
⊢
Ⅎ
_
x
x
|
φ
5
nfcv
⊢
Ⅎ
_
x
V
6
3
4
5
bj-rcleqf
⊢
V
∩
A
=
V
∩
x
|
φ
↔
∀
x
∈
V
x
∈
A
↔
x
∈
x
|
φ
7
abid
⊢
x
∈
x
|
φ
↔
φ
8
7
bibi2i
⊢
x
∈
A
↔
x
∈
x
|
φ
↔
x
∈
A
↔
φ
9
8
ralbii
⊢
∀
x
∈
V
x
∈
A
↔
x
∈
x
|
φ
↔
∀
x
∈
V
x
∈
A
↔
φ
10
2
6
9
3bitri
⊢
V
∩
A
=
x
∈
V
|
φ
↔
∀
x
∈
V
x
∈
A
↔
φ