Metamath Proof Explorer


Theorem bj-reabeq

Description: Relative form of abeq2 . (Contributed by BJ, 27-Dec-2023)

Ref Expression
Assertion bj-reabeq V A = x V | φ x V x A φ

Proof

Step Hyp Ref Expression
1 dfrab3 x V | φ = V x | φ
2 1 eqeq2i V A = x V | φ V A = V x | φ
3 nfcv _ x A
4 nfab1 _ x x | φ
5 nfcv _ x V
6 3 4 5 bj-rcleqf V A = V x | φ x V x A x x | φ
7 abid x x | φ φ
8 7 bibi2i x A x x | φ x A φ
9 8 ralbii x V x A x x | φ x V x A φ
10 2 6 9 3bitri V A = x V | φ x V x A φ