Metamath Proof Explorer


Theorem bj-sngltag

Description: The singletonization and the tagging of a set contain the same singletons. (Contributed by BJ, 6-Oct-2018)

Ref Expression
Assertion bj-sngltag AVAsnglBAtagB

Proof

Step Hyp Ref Expression
1 bj-sngltagi AsnglBAtagB
2 df-bj-tag tagB=snglB
3 2 eleq2i AtagBAsnglB
4 elun AsnglBAsnglBA
5 idd AVAsnglBAsnglB
6 elsni AA=
7 snprc ¬AVA=
8 elex AVAV
9 8 pm2.24d AV¬AVAsnglB
10 7 9 biimtrrid AVA=AsnglB
11 6 10 syl5 AVAAsnglB
12 5 11 jaod AVAsnglBAAsnglB
13 4 12 biimtrid AVAsnglBAsnglB
14 3 13 biimtrid AVAtagBAsnglB
15 1 14 impbid2 AVAsnglBAtagB