Metamath Proof Explorer


Theorem bj-unexg

Description: Existence of binary unions of sets, proved from ax-bj-bun . (Contributed by BJ, 12-Jan-2025) (Proof modification is discouraged.)

Ref Expression
Assertion bj-unexg A V B W A B V

Proof

Step Hyp Ref Expression
1 elissetv A V x x = A
2 elissetv B W y y = B
3 exdistrv x y x = A y = B x x = A y y = B
4 uneq12 x = A y = B x y = A B
5 ax-bj-bun x y z t t z t x t y
6 5 spi y z t t z t x t y
7 6 spi z t t z t x t y
8 bj-axbun x y V z t t z t x t y
9 7 8 mpbir x y V
10 4 9 eqeltrrdi x = A y = B A B V
11 10 exlimiv y x = A y = B A B V
12 11 exlimiv x y x = A y = B A B V
13 3 12 sylbir x x = A y y = B A B V
14 1 2 13 syl2an A V B W A B V