Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for BJ
Set theory
Set theory: miscellaneous
bj-vtoclgfALT
Metamath Proof Explorer
Description: Alternate proof of vtoclgf . Proof from vtoclgft . (This may have
been the original proof before shortening.) (Contributed by BJ , 30-Sep-2019) (Proof modification is discouraged.)
(New usage is discouraged.)
Ref
Expression
Hypotheses
bj-vtoclgfALT.1
⊢ Ⅎ _ x A
bj-vtoclgfALT.2
⊢ Ⅎ x ψ
bj-vtoclgfALT.3
⊢ x = A → φ ↔ ψ
bj-vtoclgfALT.4
⊢ φ
Assertion
bj-vtoclgfALT
⊢ A ∈ V → ψ
Proof
Step
Hyp
Ref
Expression
1
bj-vtoclgfALT.1
⊢ Ⅎ _ x A
2
bj-vtoclgfALT.2
⊢ Ⅎ x ψ
3
bj-vtoclgfALT.3
⊢ x = A → φ ↔ ψ
4
bj-vtoclgfALT.4
⊢ φ
5
1 2
pm3.2i
⊢ Ⅎ _ x A ∧ Ⅎ x ψ
6
3
ax-gen
⊢ ∀ x x = A → φ ↔ ψ
7
4
ax-gen
⊢ ∀ x φ
8
6 7
pm3.2i
⊢ ∀ x x = A → φ ↔ ψ ∧ ∀ x φ
9
vtoclgft
⊢ Ⅎ _ x A ∧ Ⅎ x ψ ∧ ∀ x x = A → φ ↔ ψ ∧ ∀ x φ ∧ A ∈ V → ψ
10
5 8 9
mp3an12
⊢ A ∈ V → ψ