Metamath Proof Explorer


Theorem bj-xpcossxp

Description: The composition of two Cartesian products is included in the expected Cartesian product. There is equality if ( B i^i C ) =/= (/) , see xpcogend . (Contributed by BJ, 22-May-2024)

Ref Expression
Assertion bj-xpcossxp C×DA×BA×D

Proof

Step Hyp Ref Expression
1 brxp xA×ByxAyB
2 brxp yC×DtyCtD
3 1 2 anbi12i xA×ByyC×DtxAyByCtD
4 an43 xAyByCtDxAtDyByC
5 3 4 bitri xA×ByyC×DtxAtDyByC
6 5 exbii yxA×ByyC×DtyxAtDyByC
7 19.42v yxAtDyByCxAtDyyByC
8 7 simplbi yxAtDyByCxAtD
9 6 8 sylbi yxA×ByyC×DtxAtD
10 9 ssopab2i xt|yxA×ByyC×Dtxt|xAtD
11 df-co C×DA×B=xt|yxA×ByyC×Dt
12 df-xp A×D=xt|xAtD
13 10 11 12 3sstr4i C×DA×BA×D