| Step | Hyp | Ref | Expression | 
						
							| 1 |  | brxp | ⊢ ( 𝑥 ( 𝐴  ×  𝐵 ) 𝑦  ↔  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 ) ) | 
						
							| 2 |  | brxp | ⊢ ( 𝑦 ( 𝐶  ×  𝐷 ) 𝑡  ↔  ( 𝑦  ∈  𝐶  ∧  𝑡  ∈  𝐷 ) ) | 
						
							| 3 | 1 2 | anbi12i | ⊢ ( ( 𝑥 ( 𝐴  ×  𝐵 ) 𝑦  ∧  𝑦 ( 𝐶  ×  𝐷 ) 𝑡 )  ↔  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐶  ∧  𝑡  ∈  𝐷 ) ) ) | 
						
							| 4 |  | an43 | ⊢ ( ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐶  ∧  𝑡  ∈  𝐷 ) )  ↔  ( ( 𝑥  ∈  𝐴  ∧  𝑡  ∈  𝐷 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑦  ∈  𝐶 ) ) ) | 
						
							| 5 | 3 4 | bitri | ⊢ ( ( 𝑥 ( 𝐴  ×  𝐵 ) 𝑦  ∧  𝑦 ( 𝐶  ×  𝐷 ) 𝑡 )  ↔  ( ( 𝑥  ∈  𝐴  ∧  𝑡  ∈  𝐷 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑦  ∈  𝐶 ) ) ) | 
						
							| 6 | 5 | exbii | ⊢ ( ∃ 𝑦 ( 𝑥 ( 𝐴  ×  𝐵 ) 𝑦  ∧  𝑦 ( 𝐶  ×  𝐷 ) 𝑡 )  ↔  ∃ 𝑦 ( ( 𝑥  ∈  𝐴  ∧  𝑡  ∈  𝐷 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑦  ∈  𝐶 ) ) ) | 
						
							| 7 |  | 19.42v | ⊢ ( ∃ 𝑦 ( ( 𝑥  ∈  𝐴  ∧  𝑡  ∈  𝐷 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑦  ∈  𝐶 ) )  ↔  ( ( 𝑥  ∈  𝐴  ∧  𝑡  ∈  𝐷 )  ∧  ∃ 𝑦 ( 𝑦  ∈  𝐵  ∧  𝑦  ∈  𝐶 ) ) ) | 
						
							| 8 | 7 | simplbi | ⊢ ( ∃ 𝑦 ( ( 𝑥  ∈  𝐴  ∧  𝑡  ∈  𝐷 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑦  ∈  𝐶 ) )  →  ( 𝑥  ∈  𝐴  ∧  𝑡  ∈  𝐷 ) ) | 
						
							| 9 | 6 8 | sylbi | ⊢ ( ∃ 𝑦 ( 𝑥 ( 𝐴  ×  𝐵 ) 𝑦  ∧  𝑦 ( 𝐶  ×  𝐷 ) 𝑡 )  →  ( 𝑥  ∈  𝐴  ∧  𝑡  ∈  𝐷 ) ) | 
						
							| 10 | 9 | ssopab2i | ⊢ { 〈 𝑥 ,  𝑡 〉  ∣  ∃ 𝑦 ( 𝑥 ( 𝐴  ×  𝐵 ) 𝑦  ∧  𝑦 ( 𝐶  ×  𝐷 ) 𝑡 ) }  ⊆  { 〈 𝑥 ,  𝑡 〉  ∣  ( 𝑥  ∈  𝐴  ∧  𝑡  ∈  𝐷 ) } | 
						
							| 11 |  | df-co | ⊢ ( ( 𝐶  ×  𝐷 )  ∘  ( 𝐴  ×  𝐵 ) )  =  { 〈 𝑥 ,  𝑡 〉  ∣  ∃ 𝑦 ( 𝑥 ( 𝐴  ×  𝐵 ) 𝑦  ∧  𝑦 ( 𝐶  ×  𝐷 ) 𝑡 ) } | 
						
							| 12 |  | df-xp | ⊢ ( 𝐴  ×  𝐷 )  =  { 〈 𝑥 ,  𝑡 〉  ∣  ( 𝑥  ∈  𝐴  ∧  𝑡  ∈  𝐷 ) } | 
						
							| 13 | 10 11 12 | 3sstr4i | ⊢ ( ( 𝐶  ×  𝐷 )  ∘  ( 𝐴  ×  𝐵 ) )  ⊆  ( 𝐴  ×  𝐷 ) |