Step |
Hyp |
Ref |
Expression |
1 |
|
brxp |
⊢ ( 𝑥 ( 𝐴 × 𝐵 ) 𝑦 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) |
2 |
|
brxp |
⊢ ( 𝑦 ( 𝐶 × 𝐷 ) 𝑡 ↔ ( 𝑦 ∈ 𝐶 ∧ 𝑡 ∈ 𝐷 ) ) |
3 |
1 2
|
anbi12i |
⊢ ( ( 𝑥 ( 𝐴 × 𝐵 ) 𝑦 ∧ 𝑦 ( 𝐶 × 𝐷 ) 𝑡 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑡 ∈ 𝐷 ) ) ) |
4 |
|
an43 |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑡 ∈ 𝐷 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑡 ∈ 𝐷 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ) |
5 |
3 4
|
bitri |
⊢ ( ( 𝑥 ( 𝐴 × 𝐵 ) 𝑦 ∧ 𝑦 ( 𝐶 × 𝐷 ) 𝑡 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑡 ∈ 𝐷 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ) |
6 |
5
|
exbii |
⊢ ( ∃ 𝑦 ( 𝑥 ( 𝐴 × 𝐵 ) 𝑦 ∧ 𝑦 ( 𝐶 × 𝐷 ) 𝑡 ) ↔ ∃ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑡 ∈ 𝐷 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ) |
7 |
|
19.42v |
⊢ ( ∃ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑡 ∈ 𝐷 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑡 ∈ 𝐷 ) ∧ ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ) |
8 |
7
|
simplbi |
⊢ ( ∃ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑡 ∈ 𝐷 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 ∈ 𝐴 ∧ 𝑡 ∈ 𝐷 ) ) |
9 |
6 8
|
sylbi |
⊢ ( ∃ 𝑦 ( 𝑥 ( 𝐴 × 𝐵 ) 𝑦 ∧ 𝑦 ( 𝐶 × 𝐷 ) 𝑡 ) → ( 𝑥 ∈ 𝐴 ∧ 𝑡 ∈ 𝐷 ) ) |
10 |
9
|
ssopab2i |
⊢ { 〈 𝑥 , 𝑡 〉 ∣ ∃ 𝑦 ( 𝑥 ( 𝐴 × 𝐵 ) 𝑦 ∧ 𝑦 ( 𝐶 × 𝐷 ) 𝑡 ) } ⊆ { 〈 𝑥 , 𝑡 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑡 ∈ 𝐷 ) } |
11 |
|
df-co |
⊢ ( ( 𝐶 × 𝐷 ) ∘ ( 𝐴 × 𝐵 ) ) = { 〈 𝑥 , 𝑡 〉 ∣ ∃ 𝑦 ( 𝑥 ( 𝐴 × 𝐵 ) 𝑦 ∧ 𝑦 ( 𝐶 × 𝐷 ) 𝑡 ) } |
12 |
|
df-xp |
⊢ ( 𝐴 × 𝐷 ) = { 〈 𝑥 , 𝑡 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑡 ∈ 𝐷 ) } |
13 |
10 11 12
|
3sstr4i |
⊢ ( ( 𝐶 × 𝐷 ) ∘ ( 𝐴 × 𝐵 ) ) ⊆ ( 𝐴 × 𝐷 ) |