Metamath Proof Explorer


Theorem bj-xpima2sn

Description: The image of a singleton by a direct product, nonempty case. [To replace xpimasn .] (Contributed by BJ, 6-Apr-2019) (Proof modification is discouraged.)

Ref Expression
Assertion bj-xpima2sn XAA×BX=B

Proof

Step Hyp Ref Expression
1 bj-xpimasn A×BX=ifXAB
2 iftrue XAifXAB=B
3 1 2 eqtrid XAA×BX=B