Metamath Proof Explorer


Theorem xpimasn

Description: Direct image of a singleton by a Cartesian product. (Contributed by Thierry Arnoux, 14-Jan-2018) (Proof shortened by BJ, 6-Apr-2019)

Ref Expression
Assertion xpimasn XAA×BX=B

Proof

Step Hyp Ref Expression
1 disjsn AX=¬XA
2 1 necon3abii AX¬¬XA
3 notnotb XA¬¬XA
4 2 3 bitr4i AXXA
5 xpima2 AXA×BX=B
6 4 5 sylbir XAA×BX=B