Metamath Proof Explorer


Theorem sossfld

Description: The base set of a strict order is contained in the field of the relation, except possibly for one element (note that (/) Or { B } ). (Contributed by Mario Carneiro, 27-Apr-2015)

Ref Expression
Assertion sossfld ROrABAABdomRranR

Proof

Step Hyp Ref Expression
1 eldifsn xABxAxB
2 sotrieq ROrAxABAx=B¬xRBBRx
3 2 necon2abid ROrAxABAxRBBRxxB
4 3 anass1rs ROrABAxAxRBBRxxB
5 breldmg xABAxRBxdomR
6 5 3expia xABAxRBxdomR
7 6 ancoms BAxAxRBxdomR
8 brelrng BAxABRxxranR
9 8 3expia BAxABRxxranR
10 7 9 orim12d BAxAxRBBRxxdomRxranR
11 elun xdomRranRxdomRxranR
12 10 11 imbitrrdi BAxAxRBBRxxdomRranR
13 12 adantll ROrABAxAxRBBRxxdomRranR
14 4 13 sylbird ROrABAxAxBxdomRranR
15 14 expimpd ROrABAxAxBxdomRranR
16 1 15 biimtrid ROrABAxABxdomRranR
17 16 ssrdv ROrABAABdomRranR