| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eldifsn |
⊢ ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝐵 ) ) |
| 2 |
|
sotrieq |
⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ) → ( 𝑥 = 𝐵 ↔ ¬ ( 𝑥 𝑅 𝐵 ∨ 𝐵 𝑅 𝑥 ) ) ) |
| 3 |
2
|
necon2abid |
⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ) → ( ( 𝑥 𝑅 𝐵 ∨ 𝐵 𝑅 𝑥 ) ↔ 𝑥 ≠ 𝐵 ) ) |
| 4 |
3
|
anass1rs |
⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 𝑅 𝐵 ∨ 𝐵 𝑅 𝑥 ) ↔ 𝑥 ≠ 𝐵 ) ) |
| 5 |
|
breldmg |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝑥 𝑅 𝐵 ) → 𝑥 ∈ dom 𝑅 ) |
| 6 |
5
|
3expia |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ( 𝑥 𝑅 𝐵 → 𝑥 ∈ dom 𝑅 ) ) |
| 7 |
6
|
ancoms |
⊢ ( ( 𝐵 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 𝑅 𝐵 → 𝑥 ∈ dom 𝑅 ) ) |
| 8 |
|
brelrng |
⊢ ( ( 𝐵 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ 𝐵 𝑅 𝑥 ) → 𝑥 ∈ ran 𝑅 ) |
| 9 |
8
|
3expia |
⊢ ( ( 𝐵 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 𝑅 𝑥 → 𝑥 ∈ ran 𝑅 ) ) |
| 10 |
7 9
|
orim12d |
⊢ ( ( 𝐵 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 𝑅 𝐵 ∨ 𝐵 𝑅 𝑥 ) → ( 𝑥 ∈ dom 𝑅 ∨ 𝑥 ∈ ran 𝑅 ) ) ) |
| 11 |
|
elun |
⊢ ( 𝑥 ∈ ( dom 𝑅 ∪ ran 𝑅 ) ↔ ( 𝑥 ∈ dom 𝑅 ∨ 𝑥 ∈ ran 𝑅 ) ) |
| 12 |
10 11
|
imbitrrdi |
⊢ ( ( 𝐵 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 𝑅 𝐵 ∨ 𝐵 𝑅 𝑥 ) → 𝑥 ∈ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
| 13 |
12
|
adantll |
⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 𝑅 𝐵 ∨ 𝐵 𝑅 𝑥 ) → 𝑥 ∈ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
| 14 |
4 13
|
sylbird |
⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ≠ 𝐵 → 𝑥 ∈ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
| 15 |
14
|
expimpd |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝐵 ) → 𝑥 ∈ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
| 16 |
1 15
|
biimtrid |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) → 𝑥 ∈ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
| 17 |
16
|
ssrdv |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ( 𝐴 ∖ { 𝐵 } ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) |