| Step | Hyp | Ref | Expression | 
						
							| 1 |  | relxp | ⊢ Rel  ( 𝐴  ×  𝐴 ) | 
						
							| 2 |  | relss | ⊢ ( 𝑅  ⊆  ( 𝐴  ×  𝐴 )  →  ( Rel  ( 𝐴  ×  𝐴 )  →  Rel  𝑅 ) ) | 
						
							| 3 | 1 2 | mpi | ⊢ ( 𝑅  ⊆  ( 𝐴  ×  𝐴 )  →  Rel  𝑅 ) | 
						
							| 4 | 3 | ad2antlr | ⊢ ( ( ( 𝑅  Or  𝐴  ∧  𝑅  ⊆  ( 𝐴  ×  𝐴 ) )  ∧  ¬  𝐴  ⊆  ( dom  𝑅  ∪  ran  𝑅 ) )  →  Rel  𝑅 ) | 
						
							| 5 |  | df-br | ⊢ ( 𝑥 𝑅 𝑦  ↔  〈 𝑥 ,  𝑦 〉  ∈  𝑅 ) | 
						
							| 6 |  | ssun1 | ⊢ 𝐴  ⊆  ( 𝐴  ∪  { 𝑥 } ) | 
						
							| 7 |  | undif1 | ⊢ ( ( 𝐴  ∖  { 𝑥 } )  ∪  { 𝑥 } )  =  ( 𝐴  ∪  { 𝑥 } ) | 
						
							| 8 | 6 7 | sseqtrri | ⊢ 𝐴  ⊆  ( ( 𝐴  ∖  { 𝑥 } )  ∪  { 𝑥 } ) | 
						
							| 9 |  | simpll | ⊢ ( ( ( 𝑅  Or  𝐴  ∧  𝑅  ⊆  ( 𝐴  ×  𝐴 ) )  ∧  𝑥 𝑅 𝑦 )  →  𝑅  Or  𝐴 ) | 
						
							| 10 |  | dmss | ⊢ ( 𝑅  ⊆  ( 𝐴  ×  𝐴 )  →  dom  𝑅  ⊆  dom  ( 𝐴  ×  𝐴 ) ) | 
						
							| 11 |  | dmxpid | ⊢ dom  ( 𝐴  ×  𝐴 )  =  𝐴 | 
						
							| 12 | 10 11 | sseqtrdi | ⊢ ( 𝑅  ⊆  ( 𝐴  ×  𝐴 )  →  dom  𝑅  ⊆  𝐴 ) | 
						
							| 13 | 12 | ad2antlr | ⊢ ( ( ( 𝑅  Or  𝐴  ∧  𝑅  ⊆  ( 𝐴  ×  𝐴 ) )  ∧  𝑥 𝑅 𝑦 )  →  dom  𝑅  ⊆  𝐴 ) | 
						
							| 14 | 3 | ad2antlr | ⊢ ( ( ( 𝑅  Or  𝐴  ∧  𝑅  ⊆  ( 𝐴  ×  𝐴 ) )  ∧  𝑥 𝑅 𝑦 )  →  Rel  𝑅 ) | 
						
							| 15 |  | releldm | ⊢ ( ( Rel  𝑅  ∧  𝑥 𝑅 𝑦 )  →  𝑥  ∈  dom  𝑅 ) | 
						
							| 16 | 14 15 | sylancom | ⊢ ( ( ( 𝑅  Or  𝐴  ∧  𝑅  ⊆  ( 𝐴  ×  𝐴 ) )  ∧  𝑥 𝑅 𝑦 )  →  𝑥  ∈  dom  𝑅 ) | 
						
							| 17 | 13 16 | sseldd | ⊢ ( ( ( 𝑅  Or  𝐴  ∧  𝑅  ⊆  ( 𝐴  ×  𝐴 ) )  ∧  𝑥 𝑅 𝑦 )  →  𝑥  ∈  𝐴 ) | 
						
							| 18 |  | sossfld | ⊢ ( ( 𝑅  Or  𝐴  ∧  𝑥  ∈  𝐴 )  →  ( 𝐴  ∖  { 𝑥 } )  ⊆  ( dom  𝑅  ∪  ran  𝑅 ) ) | 
						
							| 19 | 9 17 18 | syl2anc | ⊢ ( ( ( 𝑅  Or  𝐴  ∧  𝑅  ⊆  ( 𝐴  ×  𝐴 ) )  ∧  𝑥 𝑅 𝑦 )  →  ( 𝐴  ∖  { 𝑥 } )  ⊆  ( dom  𝑅  ∪  ran  𝑅 ) ) | 
						
							| 20 |  | ssun1 | ⊢ dom  𝑅  ⊆  ( dom  𝑅  ∪  ran  𝑅 ) | 
						
							| 21 | 20 16 | sselid | ⊢ ( ( ( 𝑅  Or  𝐴  ∧  𝑅  ⊆  ( 𝐴  ×  𝐴 ) )  ∧  𝑥 𝑅 𝑦 )  →  𝑥  ∈  ( dom  𝑅  ∪  ran  𝑅 ) ) | 
						
							| 22 | 21 | snssd | ⊢ ( ( ( 𝑅  Or  𝐴  ∧  𝑅  ⊆  ( 𝐴  ×  𝐴 ) )  ∧  𝑥 𝑅 𝑦 )  →  { 𝑥 }  ⊆  ( dom  𝑅  ∪  ran  𝑅 ) ) | 
						
							| 23 | 19 22 | unssd | ⊢ ( ( ( 𝑅  Or  𝐴  ∧  𝑅  ⊆  ( 𝐴  ×  𝐴 ) )  ∧  𝑥 𝑅 𝑦 )  →  ( ( 𝐴  ∖  { 𝑥 } )  ∪  { 𝑥 } )  ⊆  ( dom  𝑅  ∪  ran  𝑅 ) ) | 
						
							| 24 | 8 23 | sstrid | ⊢ ( ( ( 𝑅  Or  𝐴  ∧  𝑅  ⊆  ( 𝐴  ×  𝐴 ) )  ∧  𝑥 𝑅 𝑦 )  →  𝐴  ⊆  ( dom  𝑅  ∪  ran  𝑅 ) ) | 
						
							| 25 | 24 | ex | ⊢ ( ( 𝑅  Or  𝐴  ∧  𝑅  ⊆  ( 𝐴  ×  𝐴 ) )  →  ( 𝑥 𝑅 𝑦  →  𝐴  ⊆  ( dom  𝑅  ∪  ran  𝑅 ) ) ) | 
						
							| 26 | 5 25 | biimtrrid | ⊢ ( ( 𝑅  Or  𝐴  ∧  𝑅  ⊆  ( 𝐴  ×  𝐴 ) )  →  ( 〈 𝑥 ,  𝑦 〉  ∈  𝑅  →  𝐴  ⊆  ( dom  𝑅  ∪  ran  𝑅 ) ) ) | 
						
							| 27 | 26 | con3dimp | ⊢ ( ( ( 𝑅  Or  𝐴  ∧  𝑅  ⊆  ( 𝐴  ×  𝐴 ) )  ∧  ¬  𝐴  ⊆  ( dom  𝑅  ∪  ran  𝑅 ) )  →  ¬  〈 𝑥 ,  𝑦 〉  ∈  𝑅 ) | 
						
							| 28 | 27 | pm2.21d | ⊢ ( ( ( 𝑅  Or  𝐴  ∧  𝑅  ⊆  ( 𝐴  ×  𝐴 ) )  ∧  ¬  𝐴  ⊆  ( dom  𝑅  ∪  ran  𝑅 ) )  →  ( 〈 𝑥 ,  𝑦 〉  ∈  𝑅  →  〈 𝑥 ,  𝑦 〉  ∈  ∅ ) ) | 
						
							| 29 | 4 28 | relssdv | ⊢ ( ( ( 𝑅  Or  𝐴  ∧  𝑅  ⊆  ( 𝐴  ×  𝐴 ) )  ∧  ¬  𝐴  ⊆  ( dom  𝑅  ∪  ran  𝑅 ) )  →  𝑅  ⊆  ∅ ) | 
						
							| 30 |  | ss0 | ⊢ ( 𝑅  ⊆  ∅  →  𝑅  =  ∅ ) | 
						
							| 31 | 29 30 | syl | ⊢ ( ( ( 𝑅  Or  𝐴  ∧  𝑅  ⊆  ( 𝐴  ×  𝐴 ) )  ∧  ¬  𝐴  ⊆  ( dom  𝑅  ∪  ran  𝑅 ) )  →  𝑅  =  ∅ ) | 
						
							| 32 | 31 | ex | ⊢ ( ( 𝑅  Or  𝐴  ∧  𝑅  ⊆  ( 𝐴  ×  𝐴 ) )  →  ( ¬  𝐴  ⊆  ( dom  𝑅  ∪  ran  𝑅 )  →  𝑅  =  ∅ ) ) | 
						
							| 33 | 32 | necon1ad | ⊢ ( ( 𝑅  Or  𝐴  ∧  𝑅  ⊆  ( 𝐴  ×  𝐴 ) )  →  ( 𝑅  ≠  ∅  →  𝐴  ⊆  ( dom  𝑅  ∪  ran  𝑅 ) ) ) | 
						
							| 34 | 33 | 3impia | ⊢ ( ( 𝑅  Or  𝐴  ∧  𝑅  ⊆  ( 𝐴  ×  𝐴 )  ∧  𝑅  ≠  ∅ )  →  𝐴  ⊆  ( dom  𝑅  ∪  ran  𝑅 ) ) | 
						
							| 35 |  | rnss | ⊢ ( 𝑅  ⊆  ( 𝐴  ×  𝐴 )  →  ran  𝑅  ⊆  ran  ( 𝐴  ×  𝐴 ) ) | 
						
							| 36 |  | rnxpid | ⊢ ran  ( 𝐴  ×  𝐴 )  =  𝐴 | 
						
							| 37 | 35 36 | sseqtrdi | ⊢ ( 𝑅  ⊆  ( 𝐴  ×  𝐴 )  →  ran  𝑅  ⊆  𝐴 ) | 
						
							| 38 | 12 37 | unssd | ⊢ ( 𝑅  ⊆  ( 𝐴  ×  𝐴 )  →  ( dom  𝑅  ∪  ran  𝑅 )  ⊆  𝐴 ) | 
						
							| 39 | 38 | 3ad2ant2 | ⊢ ( ( 𝑅  Or  𝐴  ∧  𝑅  ⊆  ( 𝐴  ×  𝐴 )  ∧  𝑅  ≠  ∅ )  →  ( dom  𝑅  ∪  ran  𝑅 )  ⊆  𝐴 ) | 
						
							| 40 | 34 39 | eqssd | ⊢ ( ( 𝑅  Or  𝐴  ∧  𝑅  ⊆  ( 𝐴  ×  𝐴 )  ∧  𝑅  ≠  ∅ )  →  𝐴  =  ( dom  𝑅  ∪  ran  𝑅 ) ) |