Metamath Proof Explorer


Theorem bnj1000

Description: Technical lemma for bnj852 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1000.1 ψiωsuciNfsuci=yfipredyAR
bnj1000.2 No typesetting found for |- ( ps" <-> [. G / f ]. ps ) with typecode |-
bnj1000.3 GV
bnj1000.15 C=yfmpredyAR
bnj1000.16 G=fnC
Assertion bnj1000 Could not format assertion : No typesetting found for |- ( ps" <-> A. i e. _om ( suc i e. N -> ( G ` suc i ) = U_ y e. ( G ` i ) _pred ( y , A , R ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 bnj1000.1 ψiωsuciNfsuci=yfipredyAR
2 bnj1000.2 Could not format ( ps" <-> [. G / f ]. ps ) : No typesetting found for |- ( ps" <-> [. G / f ]. ps ) with typecode |-
3 bnj1000.3 GV
4 bnj1000.15 C=yfmpredyAR
5 bnj1000.16 G=fnC
6 df-ral iωsuciNfsuci=yfipredyARiiωsuciNfsuci=yfipredyAR
7 6 bicomi iiωsuciNfsuci=yfipredyARiωsuciNfsuci=yfipredyAR
8 7 sbcbii [˙G/f]˙iiωsuciNfsuci=yfipredyAR[˙G/f]˙iωsuciNfsuci=yfipredyAR
9 nfv fiω
10 9 sbc19.21g GV[˙G/f]˙iωsuciNfsuci=yfipredyARiω[˙G/f]˙suciNfsuci=yfipredyAR
11 3 10 ax-mp [˙G/f]˙iωsuciNfsuci=yfipredyARiω[˙G/f]˙suciNfsuci=yfipredyAR
12 nfv fsuciN
13 12 sbc19.21g GV[˙G/f]˙suciNfsuci=yfipredyARsuciN[˙G/f]˙fsuci=yfipredyAR
14 3 13 ax-mp [˙G/f]˙suciNfsuci=yfipredyARsuciN[˙G/f]˙fsuci=yfipredyAR
15 fveq1 f=Gfsuci=Gsuci
16 fveq1 f=Gfi=Gi
17 ax-5 wfiywfi
18 nfcv _yf
19 nfcv _yn
20 nfiu1 _yyfmpredyAR
21 4 20 nfcxfr _yC
22 19 21 nfop _ynC
23 22 nfsn _ynC
24 18 23 nfun _yfnC
25 5 24 nfcxfr _yG
26 nfcv _yi
27 25 26 nffv _yGi
28 27 nfcrii wGiywGi
29 17 28 bnj1316 fi=GiyfipredyAR=yGipredyAR
30 16 29 syl f=GyfipredyAR=yGipredyAR
31 15 30 eqeq12d f=Gfsuci=yfipredyARGsuci=yGipredyAR
32 fveq1 f=efsuci=esuci
33 fveq1 f=efi=ei
34 ax-5 fi=eiyfi=ei
35 34 bnj956 fi=eiyfipredyAR=yeipredyAR
36 33 35 syl f=eyfipredyAR=yeipredyAR
37 32 36 eqeq12d f=efsuci=yfipredyAResuci=yeipredyAR
38 fveq1 e=Gesuci=Gsuci
39 fveq1 e=Gei=Gi
40 ax-5 weiywei
41 40 28 bnj1316 ei=GiyeipredyAR=yGipredyAR
42 39 41 syl e=GyeipredyAR=yGipredyAR
43 38 42 eqeq12d e=Gesuci=yeipredyARGsuci=yGipredyAR
44 3 31 37 43 bnj610 [˙G/f]˙fsuci=yfipredyARGsuci=yGipredyAR
45 44 imbi2i suciN[˙G/f]˙fsuci=yfipredyARsuciNGsuci=yGipredyAR
46 14 45 bitri [˙G/f]˙suciNfsuci=yfipredyARsuciNGsuci=yGipredyAR
47 46 imbi2i iω[˙G/f]˙suciNfsuci=yfipredyARiωsuciNGsuci=yGipredyAR
48 11 47 bitri [˙G/f]˙iωsuciNfsuci=yfipredyARiωsuciNGsuci=yGipredyAR
49 48 albii i[˙G/f]˙iωsuciNfsuci=yfipredyARiiωsuciNGsuci=yGipredyAR
50 sbcal [˙G/f]˙iiωsuciNfsuci=yfipredyARi[˙G/f]˙iωsuciNfsuci=yfipredyAR
51 df-ral iωsuciNGsuci=yGipredyARiiωsuciNGsuci=yGipredyAR
52 49 50 51 3bitr4ri iωsuciNGsuci=yGipredyAR[˙G/f]˙iiωsuciNfsuci=yfipredyAR
53 1 sbcbii [˙G/f]˙ψ[˙G/f]˙iωsuciNfsuci=yfipredyAR
54 8 52 53 3bitr4ri [˙G/f]˙ψiωsuciNGsuci=yGipredyAR
55 2 54 bitri Could not format ( ps" <-> A. i e. _om ( suc i e. N -> ( G ` suc i ) = U_ y e. ( G ` i ) _pred ( y , A , R ) ) ) : No typesetting found for |- ( ps" <-> A. i e. _om ( suc i e. N -> ( G ` suc i ) = U_ y e. ( G ` i ) _pred ( y , A , R ) ) ) with typecode |-