Description: Technical lemma for bnj852 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bnj1000.1 | |
|
bnj1000.2 | No typesetting found for |- ( ps" <-> [. G / f ]. ps ) with typecode |- | ||
bnj1000.3 | |
||
bnj1000.15 | |
||
bnj1000.16 | |
||
Assertion | bnj1000 | Could not format assertion : No typesetting found for |- ( ps" <-> A. i e. _om ( suc i e. N -> ( G ` suc i ) = U_ y e. ( G ` i ) _pred ( y , A , R ) ) ) with typecode |- |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1000.1 | |
|
2 | bnj1000.2 | Could not format ( ps" <-> [. G / f ]. ps ) : No typesetting found for |- ( ps" <-> [. G / f ]. ps ) with typecode |- | |
3 | bnj1000.3 | |
|
4 | bnj1000.15 | |
|
5 | bnj1000.16 | |
|
6 | df-ral | |
|
7 | 6 | bicomi | |
8 | 7 | sbcbii | |
9 | nfv | |
|
10 | 9 | sbc19.21g | |
11 | 3 10 | ax-mp | |
12 | nfv | |
|
13 | 12 | sbc19.21g | |
14 | 3 13 | ax-mp | |
15 | fveq1 | |
|
16 | fveq1 | |
|
17 | ax-5 | |
|
18 | nfcv | |
|
19 | nfcv | |
|
20 | nfiu1 | |
|
21 | 4 20 | nfcxfr | |
22 | 19 21 | nfop | |
23 | 22 | nfsn | |
24 | 18 23 | nfun | |
25 | 5 24 | nfcxfr | |
26 | nfcv | |
|
27 | 25 26 | nffv | |
28 | 27 | nfcrii | |
29 | 17 28 | bnj1316 | |
30 | 16 29 | syl | |
31 | 15 30 | eqeq12d | |
32 | fveq1 | |
|
33 | fveq1 | |
|
34 | ax-5 | |
|
35 | 34 | bnj956 | |
36 | 33 35 | syl | |
37 | 32 36 | eqeq12d | |
38 | fveq1 | |
|
39 | fveq1 | |
|
40 | ax-5 | |
|
41 | 40 28 | bnj1316 | |
42 | 39 41 | syl | |
43 | 38 42 | eqeq12d | |
44 | 3 31 37 43 | bnj610 | |
45 | 44 | imbi2i | |
46 | 14 45 | bitri | |
47 | 46 | imbi2i | |
48 | 11 47 | bitri | |
49 | 48 | albii | |
50 | sbcal | |
|
51 | df-ral | |
|
52 | 49 50 51 | 3bitr4ri | |
53 | 1 | sbcbii | |
54 | 8 52 53 | 3bitr4ri | |
55 | 2 54 | bitri | Could not format ( ps" <-> A. i e. _om ( suc i e. N -> ( G ` suc i ) = U_ y e. ( G ` i ) _pred ( y , A , R ) ) ) : No typesetting found for |- ( ps" <-> A. i e. _om ( suc i e. N -> ( G ` suc i ) = U_ y e. ( G ` i ) _pred ( y , A , R ) ) ) with typecode |- |