Metamath Proof Explorer


Theorem bnj1021

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1021.1 φf=predXAR
bnj1021.2 ψiωsucinfsuci=yfipredyAR
bnj1021.3 χnDfFnnφψ
bnj1021.4 θRFrSeAXAytrClXARzpredyAR
bnj1021.5 τmωn=sucmp=sucn
bnj1021.6 ηinyfi
bnj1021.13 D=ω
bnj1021.14 B=f|nDfFnnφψ
Assertion bnj1021 fnimθθχηpτ

Proof

Step Hyp Ref Expression
1 bnj1021.1 φf=predXAR
2 bnj1021.2 ψiωsucinfsuci=yfipredyAR
3 bnj1021.3 χnDfFnnφψ
4 bnj1021.4 θRFrSeAXAytrClXARzpredyAR
5 bnj1021.5 τmωn=sucmp=sucn
6 bnj1021.6 ηinyfi
7 bnj1021.13 D=ω
8 bnj1021.14 B=f|nDfFnnφψ
9 1 2 3 4 5 6 7 8 bnj996 fnimpθχτη
10 anclb θχτηθθχτη
11 bnj252 θχτηθχτη
12 11 imbi2i θθχτηθθχτη
13 10 12 bitr4i θχτηθθχτη
14 13 2exbii mpθχτηmpθθχτη
15 14 3exbii fnimpθχτηfnimpθθχτη
16 9 15 mpbi fnimpθθχτη
17 19.37v pθθχτηθpθχτη
18 bnj1019 pθχτηθχηpτ
19 18 imbi2i θpθχτηθθχηpτ
20 17 19 bitri pθθχτηθθχηpτ
21 20 2exbii impθθχτηimθθχηpτ
22 21 2exbii fnimpθθχτηfnimθθχηpτ
23 16 22 mpbi fnimθθχηpτ