Metamath Proof Explorer


Theorem bnj1125

Description: Property of _trCl . (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion bnj1125 RFrSeAXAYtrClXARtrClYARtrClXAR

Proof

Step Hyp Ref Expression
1 simp1 RFrSeAXAYtrClXARRFrSeA
2 bnj1127 YtrClXARYA
3 2 3ad2ant3 RFrSeAXAYtrClXARYA
4 bnj893 RFrSeAXAtrClXARV
5 4 3adant3 RFrSeAXAYtrClXARtrClXARV
6 bnj1029 RFrSeAXATrFotrClXARAR
7 6 3adant3 RFrSeAXAYtrClXARTrFotrClXARAR
8 simp3 RFrSeAXAYtrClXARYtrClXAR
9 elisset YtrClXARyy=Y
10 9 3ad2ant3 RFrSeAXAYtrClXARyy=Y
11 df-bnj19 TrFotrClXARARytrClXARpredyARtrClXAR
12 rsp ytrClXARpredyARtrClXARytrClXARpredyARtrClXAR
13 11 12 sylbi TrFotrClXARARytrClXARpredyARtrClXAR
14 7 13 syl RFrSeAXAYtrClXARytrClXARpredyARtrClXAR
15 eleq1 y=YytrClXARYtrClXAR
16 bnj602 y=YpredyAR=predYAR
17 16 sseq1d y=YpredyARtrClXARpredYARtrClXAR
18 15 17 imbi12d y=YytrClXARpredyARtrClXARYtrClXARpredYARtrClXAR
19 14 18 imbitrid y=YRFrSeAXAYtrClXARYtrClXARpredYARtrClXAR
20 19 exlimiv yy=YRFrSeAXAYtrClXARYtrClXARpredYARtrClXAR
21 10 20 mpcom RFrSeAXAYtrClXARYtrClXARpredYARtrClXAR
22 8 21 mpd RFrSeAXAYtrClXARpredYARtrClXAR
23 biid RFrSeAYARFrSeAYA
24 biid trClXARVTrFotrClXARARpredYARtrClXARtrClXARVTrFotrClXARARpredYARtrClXAR
25 23 24 bnj1124 RFrSeAYAtrClXARVTrFotrClXARARpredYARtrClXARtrClYARtrClXAR
26 1 3 5 7 22 25 syl23anc RFrSeAXAYtrClXARtrClYARtrClXAR