| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
|- ( ( R _FrSe A /\ X e. A /\ Y e. _trCl ( X , A , R ) ) -> R _FrSe A ) |
| 2 |
|
bnj1127 |
|- ( Y e. _trCl ( X , A , R ) -> Y e. A ) |
| 3 |
2
|
3ad2ant3 |
|- ( ( R _FrSe A /\ X e. A /\ Y e. _trCl ( X , A , R ) ) -> Y e. A ) |
| 4 |
|
bnj893 |
|- ( ( R _FrSe A /\ X e. A ) -> _trCl ( X , A , R ) e. _V ) |
| 5 |
4
|
3adant3 |
|- ( ( R _FrSe A /\ X e. A /\ Y e. _trCl ( X , A , R ) ) -> _trCl ( X , A , R ) e. _V ) |
| 6 |
|
bnj1029 |
|- ( ( R _FrSe A /\ X e. A ) -> _TrFo ( _trCl ( X , A , R ) , A , R ) ) |
| 7 |
6
|
3adant3 |
|- ( ( R _FrSe A /\ X e. A /\ Y e. _trCl ( X , A , R ) ) -> _TrFo ( _trCl ( X , A , R ) , A , R ) ) |
| 8 |
|
simp3 |
|- ( ( R _FrSe A /\ X e. A /\ Y e. _trCl ( X , A , R ) ) -> Y e. _trCl ( X , A , R ) ) |
| 9 |
|
elisset |
|- ( Y e. _trCl ( X , A , R ) -> E. y y = Y ) |
| 10 |
9
|
3ad2ant3 |
|- ( ( R _FrSe A /\ X e. A /\ Y e. _trCl ( X , A , R ) ) -> E. y y = Y ) |
| 11 |
|
df-bnj19 |
|- ( _TrFo ( _trCl ( X , A , R ) , A , R ) <-> A. y e. _trCl ( X , A , R ) _pred ( y , A , R ) C_ _trCl ( X , A , R ) ) |
| 12 |
|
rsp |
|- ( A. y e. _trCl ( X , A , R ) _pred ( y , A , R ) C_ _trCl ( X , A , R ) -> ( y e. _trCl ( X , A , R ) -> _pred ( y , A , R ) C_ _trCl ( X , A , R ) ) ) |
| 13 |
11 12
|
sylbi |
|- ( _TrFo ( _trCl ( X , A , R ) , A , R ) -> ( y e. _trCl ( X , A , R ) -> _pred ( y , A , R ) C_ _trCl ( X , A , R ) ) ) |
| 14 |
7 13
|
syl |
|- ( ( R _FrSe A /\ X e. A /\ Y e. _trCl ( X , A , R ) ) -> ( y e. _trCl ( X , A , R ) -> _pred ( y , A , R ) C_ _trCl ( X , A , R ) ) ) |
| 15 |
|
eleq1 |
|- ( y = Y -> ( y e. _trCl ( X , A , R ) <-> Y e. _trCl ( X , A , R ) ) ) |
| 16 |
|
bnj602 |
|- ( y = Y -> _pred ( y , A , R ) = _pred ( Y , A , R ) ) |
| 17 |
16
|
sseq1d |
|- ( y = Y -> ( _pred ( y , A , R ) C_ _trCl ( X , A , R ) <-> _pred ( Y , A , R ) C_ _trCl ( X , A , R ) ) ) |
| 18 |
15 17
|
imbi12d |
|- ( y = Y -> ( ( y e. _trCl ( X , A , R ) -> _pred ( y , A , R ) C_ _trCl ( X , A , R ) ) <-> ( Y e. _trCl ( X , A , R ) -> _pred ( Y , A , R ) C_ _trCl ( X , A , R ) ) ) ) |
| 19 |
14 18
|
imbitrid |
|- ( y = Y -> ( ( R _FrSe A /\ X e. A /\ Y e. _trCl ( X , A , R ) ) -> ( Y e. _trCl ( X , A , R ) -> _pred ( Y , A , R ) C_ _trCl ( X , A , R ) ) ) ) |
| 20 |
19
|
exlimiv |
|- ( E. y y = Y -> ( ( R _FrSe A /\ X e. A /\ Y e. _trCl ( X , A , R ) ) -> ( Y e. _trCl ( X , A , R ) -> _pred ( Y , A , R ) C_ _trCl ( X , A , R ) ) ) ) |
| 21 |
10 20
|
mpcom |
|- ( ( R _FrSe A /\ X e. A /\ Y e. _trCl ( X , A , R ) ) -> ( Y e. _trCl ( X , A , R ) -> _pred ( Y , A , R ) C_ _trCl ( X , A , R ) ) ) |
| 22 |
8 21
|
mpd |
|- ( ( R _FrSe A /\ X e. A /\ Y e. _trCl ( X , A , R ) ) -> _pred ( Y , A , R ) C_ _trCl ( X , A , R ) ) |
| 23 |
|
biid |
|- ( ( R _FrSe A /\ Y e. A ) <-> ( R _FrSe A /\ Y e. A ) ) |
| 24 |
|
biid |
|- ( ( _trCl ( X , A , R ) e. _V /\ _TrFo ( _trCl ( X , A , R ) , A , R ) /\ _pred ( Y , A , R ) C_ _trCl ( X , A , R ) ) <-> ( _trCl ( X , A , R ) e. _V /\ _TrFo ( _trCl ( X , A , R ) , A , R ) /\ _pred ( Y , A , R ) C_ _trCl ( X , A , R ) ) ) |
| 25 |
23 24
|
bnj1124 |
|- ( ( ( R _FrSe A /\ Y e. A ) /\ ( _trCl ( X , A , R ) e. _V /\ _TrFo ( _trCl ( X , A , R ) , A , R ) /\ _pred ( Y , A , R ) C_ _trCl ( X , A , R ) ) ) -> _trCl ( Y , A , R ) C_ _trCl ( X , A , R ) ) |
| 26 |
1 3 5 7 22 25
|
syl23anc |
|- ( ( R _FrSe A /\ X e. A /\ Y e. _trCl ( X , A , R ) ) -> _trCl ( Y , A , R ) C_ _trCl ( X , A , R ) ) |