| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj1145.1 |
|- ( ph <-> ( f ` (/) ) = _pred ( X , A , R ) ) |
| 2 |
|
bnj1145.2 |
|- ( ps <-> A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) |
| 3 |
|
bnj1145.3 |
|- D = ( _om \ { (/) } ) |
| 4 |
|
bnj1145.4 |
|- B = { f | E. n e. D ( f Fn n /\ ph /\ ps ) } |
| 5 |
|
bnj1145.5 |
|- ( ch <-> ( n e. D /\ f Fn n /\ ph /\ ps ) ) |
| 6 |
|
bnj1145.6 |
|- ( th <-> ( ( i =/= (/) /\ i e. n /\ ch ) /\ ( j e. n /\ i = suc j ) ) ) |
| 7 |
1 2 3 4
|
bnj882 |
|- _trCl ( X , A , R ) = U_ f e. B U_ i e. dom f ( f ` i ) |
| 8 |
|
ss2iun |
|- ( A. f e. B U_ i e. dom f ( f ` i ) C_ A -> U_ f e. B U_ i e. dom f ( f ` i ) C_ U_ f e. B A ) |
| 9 |
5 4
|
bnj1083 |
|- ( f e. B <-> E. n ch ) |
| 10 |
2
|
bnj1095 |
|- ( ps -> A. i ps ) |
| 11 |
10 5
|
bnj1096 |
|- ( ch -> A. i ch ) |
| 12 |
3
|
bnj1098 |
|- E. j ( ( i =/= (/) /\ i e. n /\ n e. D ) -> ( j e. n /\ i = suc j ) ) |
| 13 |
5
|
bnj1232 |
|- ( ch -> n e. D ) |
| 14 |
13
|
3anim3i |
|- ( ( i =/= (/) /\ i e. n /\ ch ) -> ( i =/= (/) /\ i e. n /\ n e. D ) ) |
| 15 |
12 14
|
bnj1101 |
|- E. j ( ( i =/= (/) /\ i e. n /\ ch ) -> ( j e. n /\ i = suc j ) ) |
| 16 |
|
ancl |
|- ( ( ( i =/= (/) /\ i e. n /\ ch ) -> ( j e. n /\ i = suc j ) ) -> ( ( i =/= (/) /\ i e. n /\ ch ) -> ( ( i =/= (/) /\ i e. n /\ ch ) /\ ( j e. n /\ i = suc j ) ) ) ) |
| 17 |
15 16
|
bnj101 |
|- E. j ( ( i =/= (/) /\ i e. n /\ ch ) -> ( ( i =/= (/) /\ i e. n /\ ch ) /\ ( j e. n /\ i = suc j ) ) ) |
| 18 |
6
|
imbi2i |
|- ( ( ( i =/= (/) /\ i e. n /\ ch ) -> th ) <-> ( ( i =/= (/) /\ i e. n /\ ch ) -> ( ( i =/= (/) /\ i e. n /\ ch ) /\ ( j e. n /\ i = suc j ) ) ) ) |
| 19 |
18
|
exbii |
|- ( E. j ( ( i =/= (/) /\ i e. n /\ ch ) -> th ) <-> E. j ( ( i =/= (/) /\ i e. n /\ ch ) -> ( ( i =/= (/) /\ i e. n /\ ch ) /\ ( j e. n /\ i = suc j ) ) ) ) |
| 20 |
17 19
|
mpbir |
|- E. j ( ( i =/= (/) /\ i e. n /\ ch ) -> th ) |
| 21 |
|
bnj213 |
|- _pred ( y , A , R ) C_ A |
| 22 |
21
|
bnj226 |
|- U_ y e. ( f ` j ) _pred ( y , A , R ) C_ A |
| 23 |
|
simpr |
|- ( ( j e. n /\ i = suc j ) -> i = suc j ) |
| 24 |
6 23
|
simplbiim |
|- ( th -> i = suc j ) |
| 25 |
|
simp2 |
|- ( ( i =/= (/) /\ i e. n /\ ch ) -> i e. n ) |
| 26 |
13
|
3ad2ant3 |
|- ( ( i =/= (/) /\ i e. n /\ ch ) -> n e. D ) |
| 27 |
3
|
bnj923 |
|- ( n e. D -> n e. _om ) |
| 28 |
|
elnn |
|- ( ( i e. n /\ n e. _om ) -> i e. _om ) |
| 29 |
27 28
|
sylan2 |
|- ( ( i e. n /\ n e. D ) -> i e. _om ) |
| 30 |
25 26 29
|
syl2anc |
|- ( ( i =/= (/) /\ i e. n /\ ch ) -> i e. _om ) |
| 31 |
6 30
|
bnj832 |
|- ( th -> i e. _om ) |
| 32 |
|
vex |
|- j e. _V |
| 33 |
32
|
bnj216 |
|- ( i = suc j -> j e. i ) |
| 34 |
|
elnn |
|- ( ( j e. i /\ i e. _om ) -> j e. _om ) |
| 35 |
33 34
|
sylan |
|- ( ( i = suc j /\ i e. _om ) -> j e. _om ) |
| 36 |
24 31 35
|
syl2anc |
|- ( th -> j e. _om ) |
| 37 |
6 25
|
bnj832 |
|- ( th -> i e. n ) |
| 38 |
24 37
|
eqeltrrd |
|- ( th -> suc j e. n ) |
| 39 |
2
|
bnj589 |
|- ( ps <-> A. j e. _om ( suc j e. n -> ( f ` suc j ) = U_ y e. ( f ` j ) _pred ( y , A , R ) ) ) |
| 40 |
39
|
biimpi |
|- ( ps -> A. j e. _om ( suc j e. n -> ( f ` suc j ) = U_ y e. ( f ` j ) _pred ( y , A , R ) ) ) |
| 41 |
40
|
bnj708 |
|- ( ( n e. D /\ f Fn n /\ ph /\ ps ) -> A. j e. _om ( suc j e. n -> ( f ` suc j ) = U_ y e. ( f ` j ) _pred ( y , A , R ) ) ) |
| 42 |
|
rsp |
|- ( A. j e. _om ( suc j e. n -> ( f ` suc j ) = U_ y e. ( f ` j ) _pred ( y , A , R ) ) -> ( j e. _om -> ( suc j e. n -> ( f ` suc j ) = U_ y e. ( f ` j ) _pred ( y , A , R ) ) ) ) |
| 43 |
41 42
|
syl |
|- ( ( n e. D /\ f Fn n /\ ph /\ ps ) -> ( j e. _om -> ( suc j e. n -> ( f ` suc j ) = U_ y e. ( f ` j ) _pred ( y , A , R ) ) ) ) |
| 44 |
5 43
|
sylbi |
|- ( ch -> ( j e. _om -> ( suc j e. n -> ( f ` suc j ) = U_ y e. ( f ` j ) _pred ( y , A , R ) ) ) ) |
| 45 |
44
|
3ad2ant3 |
|- ( ( i =/= (/) /\ i e. n /\ ch ) -> ( j e. _om -> ( suc j e. n -> ( f ` suc j ) = U_ y e. ( f ` j ) _pred ( y , A , R ) ) ) ) |
| 46 |
6 45
|
bnj832 |
|- ( th -> ( j e. _om -> ( suc j e. n -> ( f ` suc j ) = U_ y e. ( f ` j ) _pred ( y , A , R ) ) ) ) |
| 47 |
36 38 46
|
mp2d |
|- ( th -> ( f ` suc j ) = U_ y e. ( f ` j ) _pred ( y , A , R ) ) |
| 48 |
|
fveqeq2 |
|- ( i = suc j -> ( ( f ` i ) = U_ y e. ( f ` j ) _pred ( y , A , R ) <-> ( f ` suc j ) = U_ y e. ( f ` j ) _pred ( y , A , R ) ) ) |
| 49 |
24 48
|
syl |
|- ( th -> ( ( f ` i ) = U_ y e. ( f ` j ) _pred ( y , A , R ) <-> ( f ` suc j ) = U_ y e. ( f ` j ) _pred ( y , A , R ) ) ) |
| 50 |
47 49
|
mpbird |
|- ( th -> ( f ` i ) = U_ y e. ( f ` j ) _pred ( y , A , R ) ) |
| 51 |
22 50
|
bnj1262 |
|- ( th -> ( f ` i ) C_ A ) |
| 52 |
20 51
|
bnj1023 |
|- E. j ( ( i =/= (/) /\ i e. n /\ ch ) -> ( f ` i ) C_ A ) |
| 53 |
|
3anass |
|- ( ( i =/= (/) /\ i e. n /\ ch ) <-> ( i =/= (/) /\ ( i e. n /\ ch ) ) ) |
| 54 |
53
|
imbi1i |
|- ( ( ( i =/= (/) /\ i e. n /\ ch ) -> ( f ` i ) C_ A ) <-> ( ( i =/= (/) /\ ( i e. n /\ ch ) ) -> ( f ` i ) C_ A ) ) |
| 55 |
54
|
exbii |
|- ( E. j ( ( i =/= (/) /\ i e. n /\ ch ) -> ( f ` i ) C_ A ) <-> E. j ( ( i =/= (/) /\ ( i e. n /\ ch ) ) -> ( f ` i ) C_ A ) ) |
| 56 |
52 55
|
mpbi |
|- E. j ( ( i =/= (/) /\ ( i e. n /\ ch ) ) -> ( f ` i ) C_ A ) |
| 57 |
1
|
biimpi |
|- ( ph -> ( f ` (/) ) = _pred ( X , A , R ) ) |
| 58 |
5 57
|
bnj771 |
|- ( ch -> ( f ` (/) ) = _pred ( X , A , R ) ) |
| 59 |
|
fveq2 |
|- ( i = (/) -> ( f ` i ) = ( f ` (/) ) ) |
| 60 |
|
bnj213 |
|- _pred ( X , A , R ) C_ A |
| 61 |
|
sseq1 |
|- ( ( f ` (/) ) = _pred ( X , A , R ) -> ( ( f ` (/) ) C_ A <-> _pred ( X , A , R ) C_ A ) ) |
| 62 |
60 61
|
mpbiri |
|- ( ( f ` (/) ) = _pred ( X , A , R ) -> ( f ` (/) ) C_ A ) |
| 63 |
|
sseq1 |
|- ( ( f ` i ) = ( f ` (/) ) -> ( ( f ` i ) C_ A <-> ( f ` (/) ) C_ A ) ) |
| 64 |
63
|
biimpar |
|- ( ( ( f ` i ) = ( f ` (/) ) /\ ( f ` (/) ) C_ A ) -> ( f ` i ) C_ A ) |
| 65 |
59 62 64
|
syl2an |
|- ( ( i = (/) /\ ( f ` (/) ) = _pred ( X , A , R ) ) -> ( f ` i ) C_ A ) |
| 66 |
58 65
|
sylan2 |
|- ( ( i = (/) /\ ch ) -> ( f ` i ) C_ A ) |
| 67 |
66
|
adantrl |
|- ( ( i = (/) /\ ( i e. n /\ ch ) ) -> ( f ` i ) C_ A ) |
| 68 |
56 67
|
bnj1109 |
|- E. j ( ( i e. n /\ ch ) -> ( f ` i ) C_ A ) |
| 69 |
|
19.9v |
|- ( E. j ( ( i e. n /\ ch ) -> ( f ` i ) C_ A ) <-> ( ( i e. n /\ ch ) -> ( f ` i ) C_ A ) ) |
| 70 |
68 69
|
mpbi |
|- ( ( i e. n /\ ch ) -> ( f ` i ) C_ A ) |
| 71 |
70
|
expcom |
|- ( ch -> ( i e. n -> ( f ` i ) C_ A ) ) |
| 72 |
|
fndm |
|- ( f Fn n -> dom f = n ) |
| 73 |
5 72
|
bnj770 |
|- ( ch -> dom f = n ) |
| 74 |
|
eleq2 |
|- ( dom f = n -> ( i e. dom f <-> i e. n ) ) |
| 75 |
74
|
imbi1d |
|- ( dom f = n -> ( ( i e. dom f -> ( f ` i ) C_ A ) <-> ( i e. n -> ( f ` i ) C_ A ) ) ) |
| 76 |
73 75
|
syl |
|- ( ch -> ( ( i e. dom f -> ( f ` i ) C_ A ) <-> ( i e. n -> ( f ` i ) C_ A ) ) ) |
| 77 |
71 76
|
mpbird |
|- ( ch -> ( i e. dom f -> ( f ` i ) C_ A ) ) |
| 78 |
11 77
|
hbralrimi |
|- ( ch -> A. i e. dom f ( f ` i ) C_ A ) |
| 79 |
78
|
exlimiv |
|- ( E. n ch -> A. i e. dom f ( f ` i ) C_ A ) |
| 80 |
9 79
|
sylbi |
|- ( f e. B -> A. i e. dom f ( f ` i ) C_ A ) |
| 81 |
|
ss2iun |
|- ( A. i e. dom f ( f ` i ) C_ A -> U_ i e. dom f ( f ` i ) C_ U_ i e. dom f A ) |
| 82 |
|
bnj1143 |
|- U_ i e. dom f A C_ A |
| 83 |
81 82
|
sstrdi |
|- ( A. i e. dom f ( f ` i ) C_ A -> U_ i e. dom f ( f ` i ) C_ A ) |
| 84 |
80 83
|
syl |
|- ( f e. B -> U_ i e. dom f ( f ` i ) C_ A ) |
| 85 |
8 84
|
mprg |
|- U_ f e. B U_ i e. dom f ( f ` i ) C_ U_ f e. B A |
| 86 |
4
|
bnj1317 |
|- ( w e. B -> A. f w e. B ) |
| 87 |
86
|
bnj1146 |
|- U_ f e. B A C_ A |
| 88 |
85 87
|
sstri |
|- U_ f e. B U_ i e. dom f ( f ` i ) C_ A |
| 89 |
7 88
|
eqsstri |
|- _trCl ( X , A , R ) C_ A |