Metamath Proof Explorer


Theorem bnj1413

Description: Property of _trCl . (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypothesis bnj1413.1 B=predXARypredXARtrClyAR
Assertion bnj1413 RFrSeAXABV

Proof

Step Hyp Ref Expression
1 bnj1413.1 B=predXARypredXARtrClyAR
2 bnj1148 RFrSeAXApredXARV
3 bnj893 RFrSeAXAtrClXARV
4 simp1 RFrSeAXAytrClXARRFrSeA
5 bnj1127 ytrClXARyA
6 5 3ad2ant3 RFrSeAXAytrClXARyA
7 bnj893 RFrSeAyAtrClyARV
8 4 6 7 syl2anc RFrSeAXAytrClXARtrClyARV
9 8 3expia RFrSeAXAytrClXARtrClyARV
10 9 ralrimiv RFrSeAXAytrClXARtrClyARV
11 iunexg trClXARVytrClXARtrClyARVytrClXARtrClyARV
12 3 10 11 syl2anc RFrSeAXAytrClXARtrClyARV
13 2 12 bnj1149 RFrSeAXApredXARytrClXARtrClyARV
14 bnj906 RFrSeAXApredXARtrClXAR
15 iunss1 predXARtrClXARypredXARtrClyARytrClXARtrClyAR
16 unss2 ypredXARtrClyARytrClXARtrClyARpredXARypredXARtrClyARpredXARytrClXARtrClyAR
17 14 15 16 3syl RFrSeAXApredXARypredXARtrClyARpredXARytrClXARtrClyAR
18 1 17 eqsstrid RFrSeAXABpredXARytrClXARtrClyAR
19 13 18 ssexd RFrSeAXABV