Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1408.1 |
|
2 |
|
bnj1408.2 |
|
3 |
|
bnj1408.3 |
|
4 |
|
bnj1408.4 |
|
5 |
3
|
biimpri |
|
6 |
1
|
bnj1413 |
|
7 |
|
simplll |
|
8 |
|
bnj213 |
|
9 |
8
|
sseli |
|
10 |
9
|
adantl |
|
11 |
|
bnj906 |
|
12 |
7 10 11
|
syl2anc |
|
13 |
|
bnj1318 |
|
14 |
13
|
ssiun2s |
|
15 |
|
ssun4 |
|
16 |
15 1
|
sseqtrrdi |
|
17 |
14 16
|
syl |
|
18 |
17
|
adantl |
|
19 |
12 18
|
sstrd |
|
20 |
|
simpr |
|
21 |
20
|
bnj1405 |
|
22 |
|
biid |
|
23 |
|
nfv |
|
24 |
|
nfcv |
|
25 |
|
nfiu1 |
|
26 |
24 25
|
nfun |
|
27 |
1 26
|
nfcxfr |
|
28 |
27
|
nfcri |
|
29 |
23 28
|
nfan |
|
30 |
25
|
nfcri |
|
31 |
29 30
|
nfan |
|
32 |
31
|
nf5ri |
|
33 |
21 22 32
|
bnj1521 |
|
34 |
|
simplll |
|
35 |
34
|
3ad2ant1 |
|
36 |
|
bnj1147 |
|
37 |
|
simp3 |
|
38 |
36 37
|
bnj1213 |
|
39 |
35 38 11
|
syl2anc |
|
40 |
|
simp2 |
|
41 |
8 40
|
bnj1213 |
|
42 |
|
bnj1125 |
|
43 |
35 41 37 42
|
syl3anc |
|
44 |
39 43
|
sstrd |
|
45 |
|
ssiun2 |
|
46 |
45
|
3ad2ant2 |
|
47 |
|
ssun4 |
|
48 |
47 1
|
sseqtrrdi |
|
49 |
46 48
|
syl |
|
50 |
44 49
|
sstrd |
|
51 |
33 50
|
bnj593 |
|
52 |
|
nfcv |
|
53 |
52 27
|
nfss |
|
54 |
53
|
nf5ri |
|
55 |
51 54
|
bnj1397 |
|
56 |
|
simpr |
|
57 |
1
|
bnj1138 |
|
58 |
56 57
|
sylib |
|
59 |
19 55 58
|
mpjaodan |
|
60 |
59
|
ralrimiva |
|
61 |
|
df-bnj19 |
|
62 |
60 61
|
sylibr |
|
63 |
1
|
bnj931 |
|
64 |
63
|
a1i |
|
65 |
6 62 64 4
|
syl3anbrc |
|
66 |
3 4
|
bnj1124 |
|
67 |
5 65 66
|
syl2anc |
|
68 |
|
bnj906 |
|
69 |
|
iunss1 |
|
70 |
|
unss2 |
|
71 |
68 69 70
|
3syl |
|
72 |
71 1 2
|
3sstr4g |
|
73 |
|
biid |
|
74 |
|
biid |
|
75 |
2 73 74
|
bnj1136 |
|
76 |
72 75
|
sseqtrrd |
|
77 |
67 76
|
eqssd |
|