Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1408.1 |
⊢ 𝐵 = ( pred ( 𝑋 , 𝐴 , 𝑅 ) ∪ ∪ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) |
2 |
|
bnj1408.2 |
⊢ 𝐶 = ( pred ( 𝑋 , 𝐴 , 𝑅 ) ∪ ∪ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) |
3 |
|
bnj1408.3 |
⊢ ( 𝜃 ↔ ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ) |
4 |
|
bnj1408.4 |
⊢ ( 𝜏 ↔ ( 𝐵 ∈ V ∧ TrFo ( 𝐵 , 𝐴 , 𝑅 ) ∧ pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) ) |
5 |
3
|
biimpri |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → 𝜃 ) |
6 |
1
|
bnj1413 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → 𝐵 ∈ V ) |
7 |
|
simplll |
⊢ ( ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑧 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) ) → 𝑅 FrSe 𝐴 ) |
8 |
|
bnj213 |
⊢ pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐴 |
9 |
8
|
sseli |
⊢ ( 𝑧 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) → 𝑧 ∈ 𝐴 ) |
10 |
9
|
adantl |
⊢ ( ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑧 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) ) → 𝑧 ∈ 𝐴 ) |
11 |
|
bnj906 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑧 ∈ 𝐴 ) → pred ( 𝑧 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑧 , 𝐴 , 𝑅 ) ) |
12 |
7 10 11
|
syl2anc |
⊢ ( ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑧 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) ) → pred ( 𝑧 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑧 , 𝐴 , 𝑅 ) ) |
13 |
|
bnj1318 |
⊢ ( 𝑦 = 𝑧 → trCl ( 𝑦 , 𝐴 , 𝑅 ) = trCl ( 𝑧 , 𝐴 , 𝑅 ) ) |
14 |
13
|
ssiun2s |
⊢ ( 𝑧 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) → trCl ( 𝑧 , 𝐴 , 𝑅 ) ⊆ ∪ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) |
15 |
|
ssun4 |
⊢ ( trCl ( 𝑧 , 𝐴 , 𝑅 ) ⊆ ∪ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) → trCl ( 𝑧 , 𝐴 , 𝑅 ) ⊆ ( pred ( 𝑋 , 𝐴 , 𝑅 ) ∪ ∪ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
16 |
15 1
|
sseqtrrdi |
⊢ ( trCl ( 𝑧 , 𝐴 , 𝑅 ) ⊆ ∪ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) → trCl ( 𝑧 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) |
17 |
14 16
|
syl |
⊢ ( 𝑧 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) → trCl ( 𝑧 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) |
18 |
17
|
adantl |
⊢ ( ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑧 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) ) → trCl ( 𝑧 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) |
19 |
12 18
|
sstrd |
⊢ ( ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑧 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) ) → pred ( 𝑧 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) |
20 |
|
simpr |
⊢ ( ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑧 ∈ ∪ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → 𝑧 ∈ ∪ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) |
21 |
20
|
bnj1405 |
⊢ ( ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑧 ∈ ∪ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → ∃ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) 𝑧 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) |
22 |
|
biid |
⊢ ( ( ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑧 ∈ ∪ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ∧ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ ( ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑧 ∈ ∪ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ∧ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
23 |
|
nfv |
⊢ Ⅎ 𝑦 ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) |
24 |
|
nfcv |
⊢ Ⅎ 𝑦 pred ( 𝑋 , 𝐴 , 𝑅 ) |
25 |
|
nfiu1 |
⊢ Ⅎ 𝑦 ∪ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) |
26 |
24 25
|
nfun |
⊢ Ⅎ 𝑦 ( pred ( 𝑋 , 𝐴 , 𝑅 ) ∪ ∪ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) |
27 |
1 26
|
nfcxfr |
⊢ Ⅎ 𝑦 𝐵 |
28 |
27
|
nfcri |
⊢ Ⅎ 𝑦 𝑧 ∈ 𝐵 |
29 |
23 28
|
nfan |
⊢ Ⅎ 𝑦 ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) |
30 |
25
|
nfcri |
⊢ Ⅎ 𝑦 𝑧 ∈ ∪ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) |
31 |
29 30
|
nfan |
⊢ Ⅎ 𝑦 ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑧 ∈ ∪ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) |
32 |
31
|
nf5ri |
⊢ ( ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑧 ∈ ∪ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → ∀ 𝑦 ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑧 ∈ ∪ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
33 |
21 22 32
|
bnj1521 |
⊢ ( ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑧 ∈ ∪ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → ∃ 𝑦 ( ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑧 ∈ ∪ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ∧ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
34 |
|
simplll |
⊢ ( ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑧 ∈ ∪ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → 𝑅 FrSe 𝐴 ) |
35 |
34
|
3ad2ant1 |
⊢ ( ( ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑧 ∈ ∪ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ∧ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → 𝑅 FrSe 𝐴 ) |
36 |
|
bnj1147 |
⊢ trCl ( 𝑦 , 𝐴 , 𝑅 ) ⊆ 𝐴 |
37 |
|
simp3 |
⊢ ( ( ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑧 ∈ ∪ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ∧ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → 𝑧 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) |
38 |
36 37
|
bnj1213 |
⊢ ( ( ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑧 ∈ ∪ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ∧ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → 𝑧 ∈ 𝐴 ) |
39 |
35 38 11
|
syl2anc |
⊢ ( ( ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑧 ∈ ∪ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ∧ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → pred ( 𝑧 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑧 , 𝐴 , 𝑅 ) ) |
40 |
|
simp2 |
⊢ ( ( ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑧 ∈ ∪ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ∧ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) ) |
41 |
8 40
|
bnj1213 |
⊢ ( ( ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑧 ∈ ∪ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ∧ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → 𝑦 ∈ 𝐴 ) |
42 |
|
bnj1125 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → trCl ( 𝑧 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) |
43 |
35 41 37 42
|
syl3anc |
⊢ ( ( ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑧 ∈ ∪ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ∧ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → trCl ( 𝑧 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) |
44 |
39 43
|
sstrd |
⊢ ( ( ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑧 ∈ ∪ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ∧ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → pred ( 𝑧 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) |
45 |
|
ssiun2 |
⊢ ( 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) → trCl ( 𝑦 , 𝐴 , 𝑅 ) ⊆ ∪ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) |
46 |
45
|
3ad2ant2 |
⊢ ( ( ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑧 ∈ ∪ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ∧ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → trCl ( 𝑦 , 𝐴 , 𝑅 ) ⊆ ∪ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) |
47 |
|
ssun4 |
⊢ ( trCl ( 𝑦 , 𝐴 , 𝑅 ) ⊆ ∪ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) → trCl ( 𝑦 , 𝐴 , 𝑅 ) ⊆ ( pred ( 𝑋 , 𝐴 , 𝑅 ) ∪ ∪ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
48 |
47 1
|
sseqtrrdi |
⊢ ( trCl ( 𝑦 , 𝐴 , 𝑅 ) ⊆ ∪ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) → trCl ( 𝑦 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) |
49 |
46 48
|
syl |
⊢ ( ( ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑧 ∈ ∪ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ∧ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → trCl ( 𝑦 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) |
50 |
44 49
|
sstrd |
⊢ ( ( ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑧 ∈ ∪ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ∧ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → pred ( 𝑧 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) |
51 |
33 50
|
bnj593 |
⊢ ( ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑧 ∈ ∪ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → ∃ 𝑦 pred ( 𝑧 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) |
52 |
|
nfcv |
⊢ Ⅎ 𝑦 pred ( 𝑧 , 𝐴 , 𝑅 ) |
53 |
52 27
|
nfss |
⊢ Ⅎ 𝑦 pred ( 𝑧 , 𝐴 , 𝑅 ) ⊆ 𝐵 |
54 |
53
|
nf5ri |
⊢ ( pred ( 𝑧 , 𝐴 , 𝑅 ) ⊆ 𝐵 → ∀ 𝑦 pred ( 𝑧 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) |
55 |
51 54
|
bnj1397 |
⊢ ( ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑧 ∈ ∪ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → pred ( 𝑧 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) |
56 |
|
simpr |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) → 𝑧 ∈ 𝐵 ) |
57 |
1
|
bnj1138 |
⊢ ( 𝑧 ∈ 𝐵 ↔ ( 𝑧 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) ∨ 𝑧 ∈ ∪ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
58 |
56 57
|
sylib |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝑧 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) ∨ 𝑧 ∈ ∪ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
59 |
19 55 58
|
mpjaodan |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) → pred ( 𝑧 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) |
60 |
59
|
ralrimiva |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑧 ∈ 𝐵 pred ( 𝑧 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) |
61 |
|
df-bnj19 |
⊢ ( TrFo ( 𝐵 , 𝐴 , 𝑅 ) ↔ ∀ 𝑧 ∈ 𝐵 pred ( 𝑧 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) |
62 |
60 61
|
sylibr |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → TrFo ( 𝐵 , 𝐴 , 𝑅 ) ) |
63 |
1
|
bnj931 |
⊢ pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐵 |
64 |
63
|
a1i |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) |
65 |
6 62 64 4
|
syl3anbrc |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → 𝜏 ) |
66 |
3 4
|
bnj1124 |
⊢ ( ( 𝜃 ∧ 𝜏 ) → trCl ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) |
67 |
5 65 66
|
syl2anc |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → trCl ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) |
68 |
|
bnj906 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) |
69 |
|
iunss1 |
⊢ ( pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ∪ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ⊆ ∪ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) |
70 |
|
unss2 |
⊢ ( ∪ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ⊆ ∪ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) → ( pred ( 𝑋 , 𝐴 , 𝑅 ) ∪ ∪ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ⊆ ( pred ( 𝑋 , 𝐴 , 𝑅 ) ∪ ∪ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
71 |
68 69 70
|
3syl |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( pred ( 𝑋 , 𝐴 , 𝑅 ) ∪ ∪ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ⊆ ( pred ( 𝑋 , 𝐴 , 𝑅 ) ∪ ∪ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
72 |
71 1 2
|
3sstr4g |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → 𝐵 ⊆ 𝐶 ) |
73 |
|
biid |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ↔ ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ) |
74 |
|
biid |
⊢ ( ( 𝐶 ∈ V ∧ TrFo ( 𝐶 , 𝐴 , 𝑅 ) ∧ pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐶 ) ↔ ( 𝐶 ∈ V ∧ TrFo ( 𝐶 , 𝐴 , 𝑅 ) ∧ pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐶 ) ) |
75 |
2 73 74
|
bnj1136 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → trCl ( 𝑋 , 𝐴 , 𝑅 ) = 𝐶 ) |
76 |
72 75
|
sseqtrrd |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → 𝐵 ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) |
77 |
67 76
|
eqssd |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → trCl ( 𝑋 , 𝐴 , 𝑅 ) = 𝐵 ) |