Metamath Proof Explorer


Theorem bnj1408

Description: Technical lemma for bnj1414 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1408.1 𝐵 = ( pred ( 𝑋 , 𝐴 , 𝑅 ) ∪ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) )
bnj1408.2 𝐶 = ( pred ( 𝑋 , 𝐴 , 𝑅 ) ∪ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) )
bnj1408.3 ( 𝜃 ↔ ( 𝑅 FrSe 𝐴𝑋𝐴 ) )
bnj1408.4 ( 𝜏 ↔ ( 𝐵 ∈ V ∧ TrFo ( 𝐵 , 𝐴 , 𝑅 ) ∧ pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) )
Assertion bnj1408 ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → trCl ( 𝑋 , 𝐴 , 𝑅 ) = 𝐵 )

Proof

Step Hyp Ref Expression
1 bnj1408.1 𝐵 = ( pred ( 𝑋 , 𝐴 , 𝑅 ) ∪ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) )
2 bnj1408.2 𝐶 = ( pred ( 𝑋 , 𝐴 , 𝑅 ) ∪ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) )
3 bnj1408.3 ( 𝜃 ↔ ( 𝑅 FrSe 𝐴𝑋𝐴 ) )
4 bnj1408.4 ( 𝜏 ↔ ( 𝐵 ∈ V ∧ TrFo ( 𝐵 , 𝐴 , 𝑅 ) ∧ pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) )
5 3 biimpri ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → 𝜃 )
6 1 bnj1413 ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → 𝐵 ∈ V )
7 simplll ( ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ 𝑧𝐵 ) ∧ 𝑧 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) ) → 𝑅 FrSe 𝐴 )
8 bnj213 pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐴
9 8 sseli ( 𝑧 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) → 𝑧𝐴 )
10 9 adantl ( ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ 𝑧𝐵 ) ∧ 𝑧 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) ) → 𝑧𝐴 )
11 bnj906 ( ( 𝑅 FrSe 𝐴𝑧𝐴 ) → pred ( 𝑧 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑧 , 𝐴 , 𝑅 ) )
12 7 10 11 syl2anc ( ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ 𝑧𝐵 ) ∧ 𝑧 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) ) → pred ( 𝑧 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑧 , 𝐴 , 𝑅 ) )
13 bnj1318 ( 𝑦 = 𝑧 → trCl ( 𝑦 , 𝐴 , 𝑅 ) = trCl ( 𝑧 , 𝐴 , 𝑅 ) )
14 13 ssiun2s ( 𝑧 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) → trCl ( 𝑧 , 𝐴 , 𝑅 ) ⊆ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) )
15 ssun4 ( trCl ( 𝑧 , 𝐴 , 𝑅 ) ⊆ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) → trCl ( 𝑧 , 𝐴 , 𝑅 ) ⊆ ( pred ( 𝑋 , 𝐴 , 𝑅 ) ∪ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) )
16 15 1 sseqtrrdi ( trCl ( 𝑧 , 𝐴 , 𝑅 ) ⊆ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) → trCl ( 𝑧 , 𝐴 , 𝑅 ) ⊆ 𝐵 )
17 14 16 syl ( 𝑧 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) → trCl ( 𝑧 , 𝐴 , 𝑅 ) ⊆ 𝐵 )
18 17 adantl ( ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ 𝑧𝐵 ) ∧ 𝑧 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) ) → trCl ( 𝑧 , 𝐴 , 𝑅 ) ⊆ 𝐵 )
19 12 18 sstrd ( ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ 𝑧𝐵 ) ∧ 𝑧 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) ) → pred ( 𝑧 , 𝐴 , 𝑅 ) ⊆ 𝐵 )
20 simpr ( ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ 𝑧𝐵 ) ∧ 𝑧 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → 𝑧 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) )
21 20 bnj1405 ( ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ 𝑧𝐵 ) ∧ 𝑧 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → ∃ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) 𝑧 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) )
22 biid ( ( ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ 𝑧𝐵 ) ∧ 𝑧 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ∧ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ ( ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ 𝑧𝐵 ) ∧ 𝑧 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ∧ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) )
23 nfv 𝑦 ( 𝑅 FrSe 𝐴𝑋𝐴 )
24 nfcv 𝑦 pred ( 𝑋 , 𝐴 , 𝑅 )
25 nfiu1 𝑦 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 )
26 24 25 nfun 𝑦 ( pred ( 𝑋 , 𝐴 , 𝑅 ) ∪ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) )
27 1 26 nfcxfr 𝑦 𝐵
28 27 nfcri 𝑦 𝑧𝐵
29 23 28 nfan 𝑦 ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ 𝑧𝐵 )
30 25 nfcri 𝑦 𝑧 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 )
31 29 30 nfan 𝑦 ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ 𝑧𝐵 ) ∧ 𝑧 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) )
32 31 nf5ri ( ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ 𝑧𝐵 ) ∧ 𝑧 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → ∀ 𝑦 ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ 𝑧𝐵 ) ∧ 𝑧 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) )
33 21 22 32 bnj1521 ( ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ 𝑧𝐵 ) ∧ 𝑧 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → ∃ 𝑦 ( ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ 𝑧𝐵 ) ∧ 𝑧 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ∧ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) )
34 simplll ( ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ 𝑧𝐵 ) ∧ 𝑧 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → 𝑅 FrSe 𝐴 )
35 34 3ad2ant1 ( ( ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ 𝑧𝐵 ) ∧ 𝑧 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ∧ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → 𝑅 FrSe 𝐴 )
36 bnj1147 trCl ( 𝑦 , 𝐴 , 𝑅 ) ⊆ 𝐴
37 simp3 ( ( ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ 𝑧𝐵 ) ∧ 𝑧 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ∧ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → 𝑧 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) )
38 36 37 bnj1213 ( ( ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ 𝑧𝐵 ) ∧ 𝑧 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ∧ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → 𝑧𝐴 )
39 35 38 11 syl2anc ( ( ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ 𝑧𝐵 ) ∧ 𝑧 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ∧ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → pred ( 𝑧 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑧 , 𝐴 , 𝑅 ) )
40 simp2 ( ( ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ 𝑧𝐵 ) ∧ 𝑧 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ∧ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) )
41 8 40 bnj1213 ( ( ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ 𝑧𝐵 ) ∧ 𝑧 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ∧ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → 𝑦𝐴 )
42 bnj1125 ( ( 𝑅 FrSe 𝐴𝑦𝐴𝑧 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → trCl ( 𝑧 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑦 , 𝐴 , 𝑅 ) )
43 35 41 37 42 syl3anc ( ( ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ 𝑧𝐵 ) ∧ 𝑧 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ∧ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → trCl ( 𝑧 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑦 , 𝐴 , 𝑅 ) )
44 39 43 sstrd ( ( ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ 𝑧𝐵 ) ∧ 𝑧 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ∧ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → pred ( 𝑧 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑦 , 𝐴 , 𝑅 ) )
45 ssiun2 ( 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) → trCl ( 𝑦 , 𝐴 , 𝑅 ) ⊆ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) )
46 45 3ad2ant2 ( ( ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ 𝑧𝐵 ) ∧ 𝑧 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ∧ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → trCl ( 𝑦 , 𝐴 , 𝑅 ) ⊆ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) )
47 ssun4 ( trCl ( 𝑦 , 𝐴 , 𝑅 ) ⊆ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) → trCl ( 𝑦 , 𝐴 , 𝑅 ) ⊆ ( pred ( 𝑋 , 𝐴 , 𝑅 ) ∪ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) )
48 47 1 sseqtrrdi ( trCl ( 𝑦 , 𝐴 , 𝑅 ) ⊆ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) → trCl ( 𝑦 , 𝐴 , 𝑅 ) ⊆ 𝐵 )
49 46 48 syl ( ( ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ 𝑧𝐵 ) ∧ 𝑧 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ∧ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → trCl ( 𝑦 , 𝐴 , 𝑅 ) ⊆ 𝐵 )
50 44 49 sstrd ( ( ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ 𝑧𝐵 ) ∧ 𝑧 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ∧ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → pred ( 𝑧 , 𝐴 , 𝑅 ) ⊆ 𝐵 )
51 33 50 bnj593 ( ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ 𝑧𝐵 ) ∧ 𝑧 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → ∃ 𝑦 pred ( 𝑧 , 𝐴 , 𝑅 ) ⊆ 𝐵 )
52 nfcv 𝑦 pred ( 𝑧 , 𝐴 , 𝑅 )
53 52 27 nfss 𝑦 pred ( 𝑧 , 𝐴 , 𝑅 ) ⊆ 𝐵
54 53 nf5ri ( pred ( 𝑧 , 𝐴 , 𝑅 ) ⊆ 𝐵 → ∀ 𝑦 pred ( 𝑧 , 𝐴 , 𝑅 ) ⊆ 𝐵 )
55 51 54 bnj1397 ( ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ 𝑧𝐵 ) ∧ 𝑧 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → pred ( 𝑧 , 𝐴 , 𝑅 ) ⊆ 𝐵 )
56 simpr ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ 𝑧𝐵 ) → 𝑧𝐵 )
57 1 bnj1138 ( 𝑧𝐵 ↔ ( 𝑧 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) ∨ 𝑧 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) )
58 56 57 sylib ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ 𝑧𝐵 ) → ( 𝑧 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) ∨ 𝑧 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) )
59 19 55 58 mpjaodan ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ 𝑧𝐵 ) → pred ( 𝑧 , 𝐴 , 𝑅 ) ⊆ 𝐵 )
60 59 ralrimiva ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → ∀ 𝑧𝐵 pred ( 𝑧 , 𝐴 , 𝑅 ) ⊆ 𝐵 )
61 df-bnj19 ( TrFo ( 𝐵 , 𝐴 , 𝑅 ) ↔ ∀ 𝑧𝐵 pred ( 𝑧 , 𝐴 , 𝑅 ) ⊆ 𝐵 )
62 60 61 sylibr ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → TrFo ( 𝐵 , 𝐴 , 𝑅 ) )
63 1 bnj931 pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐵
64 63 a1i ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐵 )
65 6 62 64 4 syl3anbrc ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → 𝜏 )
66 3 4 bnj1124 ( ( 𝜃𝜏 ) → trCl ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐵 )
67 5 65 66 syl2anc ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → trCl ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐵 )
68 bnj906 ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) )
69 iunss1 ( pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) → 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ⊆ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) )
70 unss2 ( 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ⊆ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) → ( pred ( 𝑋 , 𝐴 , 𝑅 ) ∪ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ⊆ ( pred ( 𝑋 , 𝐴 , 𝑅 ) ∪ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) )
71 68 69 70 3syl ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → ( pred ( 𝑋 , 𝐴 , 𝑅 ) ∪ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ⊆ ( pred ( 𝑋 , 𝐴 , 𝑅 ) ∪ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) )
72 71 1 2 3sstr4g ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → 𝐵𝐶 )
73 biid ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ↔ ( 𝑅 FrSe 𝐴𝑋𝐴 ) )
74 biid ( ( 𝐶 ∈ V ∧ TrFo ( 𝐶 , 𝐴 , 𝑅 ) ∧ pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐶 ) ↔ ( 𝐶 ∈ V ∧ TrFo ( 𝐶 , 𝐴 , 𝑅 ) ∧ pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐶 ) )
75 2 73 74 bnj1136 ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → trCl ( 𝑋 , 𝐴 , 𝑅 ) = 𝐶 )
76 72 75 sseqtrrd ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → 𝐵 ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) )
77 67 76 eqssd ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → trCl ( 𝑋 , 𝐴 , 𝑅 ) = 𝐵 )