Metamath Proof Explorer


Theorem bnj1413

Description: Property of _trCl . (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypothesis bnj1413.1 𝐵 = ( pred ( 𝑋 , 𝐴 , 𝑅 ) ∪ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) )
Assertion bnj1413 ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → 𝐵 ∈ V )

Proof

Step Hyp Ref Expression
1 bnj1413.1 𝐵 = ( pred ( 𝑋 , 𝐴 , 𝑅 ) ∪ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) )
2 bnj1148 ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → pred ( 𝑋 , 𝐴 , 𝑅 ) ∈ V )
3 bnj893 ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → trCl ( 𝑋 , 𝐴 , 𝑅 ) ∈ V )
4 simp1 ( ( 𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) → 𝑅 FrSe 𝐴 )
5 bnj1127 ( 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → 𝑦𝐴 )
6 5 3ad2ant3 ( ( 𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) → 𝑦𝐴 )
7 bnj893 ( ( 𝑅 FrSe 𝐴𝑦𝐴 ) → trCl ( 𝑦 , 𝐴 , 𝑅 ) ∈ V )
8 4 6 7 syl2anc ( ( 𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) → trCl ( 𝑦 , 𝐴 , 𝑅 ) ∈ V )
9 8 3expia ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → ( 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → trCl ( 𝑦 , 𝐴 , 𝑅 ) ∈ V ) )
10 9 ralrimiv ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → ∀ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ∈ V )
11 iunexg ( ( trCl ( 𝑋 , 𝐴 , 𝑅 ) ∈ V ∧ ∀ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ∈ V ) → 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ∈ V )
12 3 10 11 syl2anc ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ∈ V )
13 2 12 bnj1149 ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → ( pred ( 𝑋 , 𝐴 , 𝑅 ) ∪ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ∈ V )
14 bnj906 ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) )
15 iunss1 ( pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) → 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ⊆ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) )
16 unss2 ( 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ⊆ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) → ( pred ( 𝑋 , 𝐴 , 𝑅 ) ∪ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ⊆ ( pred ( 𝑋 , 𝐴 , 𝑅 ) ∪ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) )
17 14 15 16 3syl ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → ( pred ( 𝑋 , 𝐴 , 𝑅 ) ∪ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ⊆ ( pred ( 𝑋 , 𝐴 , 𝑅 ) ∪ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) )
18 1 17 eqsstrid ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → 𝐵 ⊆ ( pred ( 𝑋 , 𝐴 , 𝑅 ) ∪ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) )
19 13 18 ssexd ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → 𝐵 ∈ V )