Metamath Proof Explorer


Theorem bnj540

Description: Technical lemma for bnj852 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj540.1 ψiωsuciNfsuci=yfipredyAR
bnj540.2 No typesetting found for |- ( ps" <-> [. G / f ]. ps ) with typecode |-
bnj540.3 GV
Assertion bnj540 Could not format assertion : No typesetting found for |- ( ps" <-> A. i e. _om ( suc i e. N -> ( G ` suc i ) = U_ y e. ( G ` i ) _pred ( y , A , R ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 bnj540.1 ψiωsuciNfsuci=yfipredyAR
2 bnj540.2 Could not format ( ps" <-> [. G / f ]. ps ) : No typesetting found for |- ( ps" <-> [. G / f ]. ps ) with typecode |-
3 bnj540.3 GV
4 1 sbcbii [˙G/f]˙ψ[˙G/f]˙iωsuciNfsuci=yfipredyAR
5 3 bnj538 [˙G/f]˙iωsuciNfsuci=yfipredyARiω[˙G/f]˙suciNfsuci=yfipredyAR
6 sbcimg GV[˙G/f]˙suciNfsuci=yfipredyAR[˙G/f]˙suciN[˙G/f]˙fsuci=yfipredyAR
7 3 6 ax-mp [˙G/f]˙suciNfsuci=yfipredyAR[˙G/f]˙suciN[˙G/f]˙fsuci=yfipredyAR
8 7 ralbii iω[˙G/f]˙suciNfsuci=yfipredyARiω[˙G/f]˙suciN[˙G/f]˙fsuci=yfipredyAR
9 4 5 8 3bitri [˙G/f]˙ψiω[˙G/f]˙suciN[˙G/f]˙fsuci=yfipredyAR
10 3 bnj525 [˙G/f]˙suciNsuciN
11 fveq1 f=Gfsuci=Gsuci
12 fveq1 f=Gfi=Gi
13 12 bnj1113 f=GyfipredyAR=yGipredyAR
14 11 13 eqeq12d f=Gfsuci=yfipredyARGsuci=yGipredyAR
15 3 14 sbcie [˙G/f]˙fsuci=yfipredyARGsuci=yGipredyAR
16 10 15 imbi12i [˙G/f]˙suciN[˙G/f]˙fsuci=yfipredyARsuciNGsuci=yGipredyAR
17 16 ralbii iω[˙G/f]˙suciN[˙G/f]˙fsuci=yfipredyARiωsuciNGsuci=yGipredyAR
18 2 9 17 3bitri Could not format ( ps" <-> A. i e. _om ( suc i e. N -> ( G ` suc i ) = U_ y e. ( G ` i ) _pred ( y , A , R ) ) ) : No typesetting found for |- ( ps" <-> A. i e. _om ( suc i e. N -> ( G ` suc i ) = U_ y e. ( G ` i ) _pred ( y , A , R ) ) ) with typecode |-