Description: Technical lemma for bnj852 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bnj540.1 | |
|
bnj540.2 | No typesetting found for |- ( ps" <-> [. G / f ]. ps ) with typecode |- | ||
bnj540.3 | |
||
Assertion | bnj540 | Could not format assertion : No typesetting found for |- ( ps" <-> A. i e. _om ( suc i e. N -> ( G ` suc i ) = U_ y e. ( G ` i ) _pred ( y , A , R ) ) ) with typecode |- |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj540.1 | |
|
2 | bnj540.2 | Could not format ( ps" <-> [. G / f ]. ps ) : No typesetting found for |- ( ps" <-> [. G / f ]. ps ) with typecode |- | |
3 | bnj540.3 | |
|
4 | 1 | sbcbii | |
5 | 3 | bnj538 | |
6 | sbcimg | |
|
7 | 3 6 | ax-mp | |
8 | 7 | ralbii | |
9 | 4 5 8 | 3bitri | |
10 | 3 | bnj525 | |
11 | fveq1 | |
|
12 | fveq1 | |
|
13 | 12 | bnj1113 | |
14 | 11 13 | eqeq12d | |
15 | 3 14 | sbcie | |
16 | 10 15 | imbi12i | |
17 | 16 | ralbii | |
18 | 2 9 17 | 3bitri | Could not format ( ps" <-> A. i e. _om ( suc i e. N -> ( G ` suc i ) = U_ y e. ( G ` i ) _pred ( y , A , R ) ) ) : No typesetting found for |- ( ps" <-> A. i e. _om ( suc i e. N -> ( G ` suc i ) = U_ y e. ( G ` i ) _pred ( y , A , R ) ) ) with typecode |- |