Metamath Proof Explorer


Theorem bnj540

Description: Technical lemma for bnj852 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj540.1 ψ i ω suc i N f suc i = y f i pred y A R
bnj540.2 No typesetting found for |- ( ps" <-> [. G / f ]. ps ) with typecode |-
bnj540.3 G V
Assertion bnj540 Could not format assertion : No typesetting found for |- ( ps" <-> A. i e. _om ( suc i e. N -> ( G ` suc i ) = U_ y e. ( G ` i ) _pred ( y , A , R ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 bnj540.1 ψ i ω suc i N f suc i = y f i pred y A R
2 bnj540.2 Could not format ( ps" <-> [. G / f ]. ps ) : No typesetting found for |- ( ps" <-> [. G / f ]. ps ) with typecode |-
3 bnj540.3 G V
4 1 sbcbii [˙G / f]˙ ψ [˙G / f]˙ i ω suc i N f suc i = y f i pred y A R
5 3 bnj538 [˙G / f]˙ i ω suc i N f suc i = y f i pred y A R i ω [˙G / f]˙ suc i N f suc i = y f i pred y A R
6 sbcimg G V [˙G / f]˙ suc i N f suc i = y f i pred y A R [˙G / f]˙ suc i N [˙G / f]˙ f suc i = y f i pred y A R
7 3 6 ax-mp [˙G / f]˙ suc i N f suc i = y f i pred y A R [˙G / f]˙ suc i N [˙G / f]˙ f suc i = y f i pred y A R
8 7 ralbii i ω [˙G / f]˙ suc i N f suc i = y f i pred y A R i ω [˙G / f]˙ suc i N [˙G / f]˙ f suc i = y f i pred y A R
9 4 5 8 3bitri [˙G / f]˙ ψ i ω [˙G / f]˙ suc i N [˙G / f]˙ f suc i = y f i pred y A R
10 3 bnj525 [˙G / f]˙ suc i N suc i N
11 fveq1 f = G f suc i = G suc i
12 fveq1 f = G f i = G i
13 12 bnj1113 f = G y f i pred y A R = y G i pred y A R
14 11 13 eqeq12d f = G f suc i = y f i pred y A R G suc i = y G i pred y A R
15 3 14 sbcie [˙G / f]˙ f suc i = y f i pred y A R G suc i = y G i pred y A R
16 10 15 imbi12i [˙G / f]˙ suc i N [˙G / f]˙ f suc i = y f i pred y A R suc i N G suc i = y G i pred y A R
17 16 ralbii i ω [˙G / f]˙ suc i N [˙G / f]˙ f suc i = y f i pred y A R i ω suc i N G suc i = y G i pred y A R
18 2 9 17 3bitri Could not format ( ps" <-> A. i e. _om ( suc i e. N -> ( G ` suc i ) = U_ y e. ( G ` i ) _pred ( y , A , R ) ) ) : No typesetting found for |- ( ps" <-> A. i e. _om ( suc i e. N -> ( G ` suc i ) = U_ y e. ( G ` i ) _pred ( y , A , R ) ) ) with typecode |-