Metamath Proof Explorer


Theorem bnj579

Description: Technical lemma for bnj852 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj579.1 φf=predxAR
bnj579.2 ψiωsucinfsuci=yfipredyAR
bnj579.3 D=ω
Assertion bnj579 nD*ffFnnφψ

Proof

Step Hyp Ref Expression
1 bnj579.1 φf=predxAR
2 bnj579.2 ψiωsucinfsuci=yfipredyAR
3 bnj579.3 D=ω
4 biid fFnnφψfFnnφψ
5 biid [˙g/f]˙φ[˙g/f]˙φ
6 biid [˙g/f]˙ψ[˙g/f]˙ψ
7 biid [˙g/f]˙fFnnφψ[˙g/f]˙fFnnφψ
8 biid nDfFnnφψ[˙g/f]˙fFnnφψfj=gjnDfFnnφψ[˙g/f]˙fFnnφψfj=gj
9 biid knkEj[˙k/j]˙nDfFnnφψ[˙g/f]˙fFnnφψfj=gjknkEj[˙k/j]˙nDfFnnφψ[˙g/f]˙fFnnφψfj=gj
10 1 2 4 5 6 7 3 8 9 bnj580 nD*ffFnnφψ