Metamath Proof Explorer


Theorem bnj864

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj864.1 φf=predXAR
bnj864.2 ψiωsucinfsuci=yfipredyAR
bnj864.3 D=ω
bnj864.4 χRFrSeAXAnD
bnj864.5 θfFnnφψ
Assertion bnj864 χ∃!fθ

Proof

Step Hyp Ref Expression
1 bnj864.1 φf=predXAR
2 bnj864.2 ψiωsucinfsuci=yfipredyAR
3 bnj864.3 D=ω
4 bnj864.4 χRFrSeAXAnD
5 bnj864.5 θfFnnφψ
6 1 2 3 bnj852 RFrSeAXAnD∃!ffFnnφψ
7 df-ral nD∃!ffFnnφψnnD∃!ffFnnφψ
8 7 imbi2i RFrSeAXAnD∃!ffFnnφψRFrSeAXAnnD∃!ffFnnφψ
9 19.21v nRFrSeAXAnD∃!ffFnnφψRFrSeAXAnnD∃!ffFnnφψ
10 impexp RFrSeAXAnD∃!ffFnnφψRFrSeAXAnD∃!ffFnnφψ
11 df-3an RFrSeAXAnDRFrSeAXAnD
12 11 bicomi RFrSeAXAnDRFrSeAXAnD
13 12 imbi1i RFrSeAXAnD∃!ffFnnφψRFrSeAXAnD∃!ffFnnφψ
14 10 13 bitr3i RFrSeAXAnD∃!ffFnnφψRFrSeAXAnD∃!ffFnnφψ
15 14 albii nRFrSeAXAnD∃!ffFnnφψnRFrSeAXAnD∃!ffFnnφψ
16 8 9 15 3bitr2i RFrSeAXAnD∃!ffFnnφψnRFrSeAXAnD∃!ffFnnφψ
17 6 16 mpbi nRFrSeAXAnD∃!ffFnnφψ
18 17 spi RFrSeAXAnD∃!ffFnnφψ
19 5 eubii ∃!fθ∃!ffFnnφψ
20 18 4 19 3imtr4i χ∃!fθ