Step |
Hyp |
Ref |
Expression |
1 |
|
bnj864.1 |
⊢ ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) |
2 |
|
bnj864.2 |
⊢ ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
3 |
|
bnj864.3 |
⊢ 𝐷 = ( ω ∖ { ∅ } ) |
4 |
|
bnj864.4 |
⊢ ( 𝜒 ↔ ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷 ) ) |
5 |
|
bnj864.5 |
⊢ ( 𝜃 ↔ ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
6 |
1 2 3
|
bnj852 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑛 ∈ 𝐷 ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
7 |
|
df-ral |
⊢ ( ∀ 𝑛 ∈ 𝐷 ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ↔ ∀ 𝑛 ( 𝑛 ∈ 𝐷 → ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
8 |
7
|
imbi2i |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑛 ∈ 𝐷 ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑛 ( 𝑛 ∈ 𝐷 → ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) ) |
9 |
|
19.21v |
⊢ ( ∀ 𝑛 ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝑛 ∈ 𝐷 → ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑛 ( 𝑛 ∈ 𝐷 → ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) ) |
10 |
|
impexp |
⊢ ( ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐷 ) → ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝑛 ∈ 𝐷 → ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) ) |
11 |
|
df-3an |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷 ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐷 ) ) |
12 |
11
|
bicomi |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐷 ) ↔ ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷 ) ) |
13 |
12
|
imbi1i |
⊢ ( ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐷 ) → ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷 ) → ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
14 |
10 13
|
bitr3i |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝑛 ∈ 𝐷 → ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷 ) → ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
15 |
14
|
albii |
⊢ ( ∀ 𝑛 ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝑛 ∈ 𝐷 → ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) ↔ ∀ 𝑛 ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷 ) → ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
16 |
8 9 15
|
3bitr2i |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑛 ∈ 𝐷 ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ↔ ∀ 𝑛 ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷 ) → ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
17 |
6 16
|
mpbi |
⊢ ∀ 𝑛 ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷 ) → ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
18 |
17
|
spi |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷 ) → ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
19 |
5
|
eubii |
⊢ ( ∃! 𝑓 𝜃 ↔ ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
20 |
18 4 19
|
3imtr4i |
⊢ ( 𝜒 → ∃! 𝑓 𝜃 ) |