| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj865.1 |
⊢ ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) |
| 2 |
|
bnj865.2 |
⊢ ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
| 3 |
|
bnj865.3 |
⊢ 𝐷 = ( ω ∖ { ∅ } ) |
| 4 |
|
bnj865.5 |
⊢ ( 𝜒 ↔ ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷 ) ) |
| 5 |
|
bnj865.6 |
⊢ ( 𝜃 ↔ ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
| 6 |
1 2 3
|
bnj852 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑛 ∈ 𝐷 ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
| 7 |
|
omex |
⊢ ω ∈ V |
| 8 |
|
difexg |
⊢ ( ω ∈ V → ( ω ∖ { ∅ } ) ∈ V ) |
| 9 |
7 8
|
ax-mp |
⊢ ( ω ∖ { ∅ } ) ∈ V |
| 10 |
3 9
|
eqeltri |
⊢ 𝐷 ∈ V |
| 11 |
|
raleq |
⊢ ( 𝑧 = 𝐷 → ( ∀ 𝑛 ∈ 𝑧 ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ↔ ∀ 𝑛 ∈ 𝐷 ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
| 12 |
|
raleq |
⊢ ( 𝑧 = 𝐷 → ( ∀ 𝑛 ∈ 𝑧 ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ↔ ∀ 𝑛 ∈ 𝐷 ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
| 13 |
12
|
exbidv |
⊢ ( 𝑧 = 𝐷 → ( ∃ 𝑤 ∀ 𝑛 ∈ 𝑧 ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ↔ ∃ 𝑤 ∀ 𝑛 ∈ 𝐷 ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
| 14 |
11 13
|
imbi12d |
⊢ ( 𝑧 = 𝐷 → ( ( ∀ 𝑛 ∈ 𝑧 ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) → ∃ 𝑤 ∀ 𝑛 ∈ 𝑧 ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ↔ ( ∀ 𝑛 ∈ 𝐷 ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) → ∃ 𝑤 ∀ 𝑛 ∈ 𝐷 ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) ) |
| 15 |
|
zfrep6 |
⊢ ( ∀ 𝑛 ∈ 𝑧 ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) → ∃ 𝑤 ∀ 𝑛 ∈ 𝑧 ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
| 16 |
10 14 15
|
vtocl |
⊢ ( ∀ 𝑛 ∈ 𝐷 ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) → ∃ 𝑤 ∀ 𝑛 ∈ 𝐷 ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
| 17 |
6 16
|
syl |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∃ 𝑤 ∀ 𝑛 ∈ 𝐷 ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
| 18 |
|
19.37v |
⊢ ( ∃ 𝑤 ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑛 ∈ 𝐷 ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∃ 𝑤 ∀ 𝑛 ∈ 𝐷 ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
| 19 |
17 18
|
mpbir |
⊢ ∃ 𝑤 ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑛 ∈ 𝐷 ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
| 20 |
|
df-ral |
⊢ ( ∀ 𝑛 ∈ 𝐷 ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ↔ ∀ 𝑛 ( 𝑛 ∈ 𝐷 → ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
| 21 |
20
|
imbi2i |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑛 ∈ 𝐷 ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑛 ( 𝑛 ∈ 𝐷 → ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) ) |
| 22 |
|
19.21v |
⊢ ( ∀ 𝑛 ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝑛 ∈ 𝐷 → ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑛 ( 𝑛 ∈ 𝐷 → ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) ) |
| 23 |
21 22
|
bitr4i |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑛 ∈ 𝐷 ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ↔ ∀ 𝑛 ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝑛 ∈ 𝐷 → ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) ) |
| 24 |
23
|
exbii |
⊢ ( ∃ 𝑤 ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑛 ∈ 𝐷 ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ↔ ∃ 𝑤 ∀ 𝑛 ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝑛 ∈ 𝐷 → ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) ) |
| 25 |
|
impexp |
⊢ ( ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐷 ) → ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝑛 ∈ 𝐷 → ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) ) |
| 26 |
|
df-3an |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷 ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐷 ) ) |
| 27 |
26
|
bicomi |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐷 ) ↔ ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷 ) ) |
| 28 |
27
|
imbi1i |
⊢ ( ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐷 ) → ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷 ) → ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
| 29 |
25 28
|
bitr3i |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝑛 ∈ 𝐷 → ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷 ) → ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
| 30 |
29
|
albii |
⊢ ( ∀ 𝑛 ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝑛 ∈ 𝐷 → ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) ↔ ∀ 𝑛 ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷 ) → ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
| 31 |
30
|
exbii |
⊢ ( ∃ 𝑤 ∀ 𝑛 ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝑛 ∈ 𝐷 → ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) ↔ ∃ 𝑤 ∀ 𝑛 ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷 ) → ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
| 32 |
24 31
|
bitri |
⊢ ( ∃ 𝑤 ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑛 ∈ 𝐷 ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ↔ ∃ 𝑤 ∀ 𝑛 ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷 ) → ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
| 33 |
19 32
|
mpbi |
⊢ ∃ 𝑤 ∀ 𝑛 ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷 ) → ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
| 34 |
4
|
bicomi |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷 ) ↔ 𝜒 ) |
| 35 |
34
|
imbi1i |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷 ) → ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ↔ ( 𝜒 → ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
| 36 |
35
|
albii |
⊢ ( ∀ 𝑛 ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷 ) → ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ↔ ∀ 𝑛 ( 𝜒 → ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
| 37 |
36
|
exbii |
⊢ ( ∃ 𝑤 ∀ 𝑛 ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷 ) → ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ↔ ∃ 𝑤 ∀ 𝑛 ( 𝜒 → ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
| 38 |
33 37
|
mpbi |
⊢ ∃ 𝑤 ∀ 𝑛 ( 𝜒 → ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
| 39 |
5
|
rexbii |
⊢ ( ∃ 𝑓 ∈ 𝑤 𝜃 ↔ ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
| 40 |
39
|
imbi2i |
⊢ ( ( 𝜒 → ∃ 𝑓 ∈ 𝑤 𝜃 ) ↔ ( 𝜒 → ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
| 41 |
40
|
albii |
⊢ ( ∀ 𝑛 ( 𝜒 → ∃ 𝑓 ∈ 𝑤 𝜃 ) ↔ ∀ 𝑛 ( 𝜒 → ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
| 42 |
41
|
exbii |
⊢ ( ∃ 𝑤 ∀ 𝑛 ( 𝜒 → ∃ 𝑓 ∈ 𝑤 𝜃 ) ↔ ∃ 𝑤 ∀ 𝑛 ( 𝜒 → ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
| 43 |
38 42
|
mpbir |
⊢ ∃ 𝑤 ∀ 𝑛 ( 𝜒 → ∃ 𝑓 ∈ 𝑤 𝜃 ) |