Metamath Proof Explorer


Theorem bnj865

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj865.1 ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) )
bnj865.2 ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
bnj865.3 𝐷 = ( ω ∖ { ∅ } )
bnj865.5 ( 𝜒 ↔ ( 𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷 ) )
bnj865.6 ( 𝜃 ↔ ( 𝑓 Fn 𝑛𝜑𝜓 ) )
Assertion bnj865 𝑤𝑛 ( 𝜒 → ∃ 𝑓𝑤 𝜃 )

Proof

Step Hyp Ref Expression
1 bnj865.1 ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) )
2 bnj865.2 ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
3 bnj865.3 𝐷 = ( ω ∖ { ∅ } )
4 bnj865.5 ( 𝜒 ↔ ( 𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷 ) )
5 bnj865.6 ( 𝜃 ↔ ( 𝑓 Fn 𝑛𝜑𝜓 ) )
6 1 2 3 bnj852 ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → ∀ 𝑛𝐷 ∃! 𝑓 ( 𝑓 Fn 𝑛𝜑𝜓 ) )
7 omex ω ∈ V
8 difexg ( ω ∈ V → ( ω ∖ { ∅ } ) ∈ V )
9 7 8 ax-mp ( ω ∖ { ∅ } ) ∈ V
10 3 9 eqeltri 𝐷 ∈ V
11 raleq ( 𝑧 = 𝐷 → ( ∀ 𝑛𝑧 ∃! 𝑓 ( 𝑓 Fn 𝑛𝜑𝜓 ) ↔ ∀ 𝑛𝐷 ∃! 𝑓 ( 𝑓 Fn 𝑛𝜑𝜓 ) ) )
12 raleq ( 𝑧 = 𝐷 → ( ∀ 𝑛𝑧𝑓𝑤 ( 𝑓 Fn 𝑛𝜑𝜓 ) ↔ ∀ 𝑛𝐷𝑓𝑤 ( 𝑓 Fn 𝑛𝜑𝜓 ) ) )
13 12 exbidv ( 𝑧 = 𝐷 → ( ∃ 𝑤𝑛𝑧𝑓𝑤 ( 𝑓 Fn 𝑛𝜑𝜓 ) ↔ ∃ 𝑤𝑛𝐷𝑓𝑤 ( 𝑓 Fn 𝑛𝜑𝜓 ) ) )
14 11 13 imbi12d ( 𝑧 = 𝐷 → ( ( ∀ 𝑛𝑧 ∃! 𝑓 ( 𝑓 Fn 𝑛𝜑𝜓 ) → ∃ 𝑤𝑛𝑧𝑓𝑤 ( 𝑓 Fn 𝑛𝜑𝜓 ) ) ↔ ( ∀ 𝑛𝐷 ∃! 𝑓 ( 𝑓 Fn 𝑛𝜑𝜓 ) → ∃ 𝑤𝑛𝐷𝑓𝑤 ( 𝑓 Fn 𝑛𝜑𝜓 ) ) ) )
15 zfrep6 ( ∀ 𝑛𝑧 ∃! 𝑓 ( 𝑓 Fn 𝑛𝜑𝜓 ) → ∃ 𝑤𝑛𝑧𝑓𝑤 ( 𝑓 Fn 𝑛𝜑𝜓 ) )
16 10 14 15 vtocl ( ∀ 𝑛𝐷 ∃! 𝑓 ( 𝑓 Fn 𝑛𝜑𝜓 ) → ∃ 𝑤𝑛𝐷𝑓𝑤 ( 𝑓 Fn 𝑛𝜑𝜓 ) )
17 6 16 syl ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → ∃ 𝑤𝑛𝐷𝑓𝑤 ( 𝑓 Fn 𝑛𝜑𝜓 ) )
18 19.37v ( ∃ 𝑤 ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → ∀ 𝑛𝐷𝑓𝑤 ( 𝑓 Fn 𝑛𝜑𝜓 ) ) ↔ ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → ∃ 𝑤𝑛𝐷𝑓𝑤 ( 𝑓 Fn 𝑛𝜑𝜓 ) ) )
19 17 18 mpbir 𝑤 ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → ∀ 𝑛𝐷𝑓𝑤 ( 𝑓 Fn 𝑛𝜑𝜓 ) )
20 df-ral ( ∀ 𝑛𝐷𝑓𝑤 ( 𝑓 Fn 𝑛𝜑𝜓 ) ↔ ∀ 𝑛 ( 𝑛𝐷 → ∃ 𝑓𝑤 ( 𝑓 Fn 𝑛𝜑𝜓 ) ) )
21 20 imbi2i ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → ∀ 𝑛𝐷𝑓𝑤 ( 𝑓 Fn 𝑛𝜑𝜓 ) ) ↔ ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → ∀ 𝑛 ( 𝑛𝐷 → ∃ 𝑓𝑤 ( 𝑓 Fn 𝑛𝜑𝜓 ) ) ) )
22 19.21v ( ∀ 𝑛 ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → ( 𝑛𝐷 → ∃ 𝑓𝑤 ( 𝑓 Fn 𝑛𝜑𝜓 ) ) ) ↔ ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → ∀ 𝑛 ( 𝑛𝐷 → ∃ 𝑓𝑤 ( 𝑓 Fn 𝑛𝜑𝜓 ) ) ) )
23 21 22 bitr4i ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → ∀ 𝑛𝐷𝑓𝑤 ( 𝑓 Fn 𝑛𝜑𝜓 ) ) ↔ ∀ 𝑛 ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → ( 𝑛𝐷 → ∃ 𝑓𝑤 ( 𝑓 Fn 𝑛𝜑𝜓 ) ) ) )
24 23 exbii ( ∃ 𝑤 ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → ∀ 𝑛𝐷𝑓𝑤 ( 𝑓 Fn 𝑛𝜑𝜓 ) ) ↔ ∃ 𝑤𝑛 ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → ( 𝑛𝐷 → ∃ 𝑓𝑤 ( 𝑓 Fn 𝑛𝜑𝜓 ) ) ) )
25 impexp ( ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ 𝑛𝐷 ) → ∃ 𝑓𝑤 ( 𝑓 Fn 𝑛𝜑𝜓 ) ) ↔ ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → ( 𝑛𝐷 → ∃ 𝑓𝑤 ( 𝑓 Fn 𝑛𝜑𝜓 ) ) ) )
26 df-3an ( ( 𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷 ) ↔ ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ 𝑛𝐷 ) )
27 26 bicomi ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ 𝑛𝐷 ) ↔ ( 𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷 ) )
28 27 imbi1i ( ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ 𝑛𝐷 ) → ∃ 𝑓𝑤 ( 𝑓 Fn 𝑛𝜑𝜓 ) ) ↔ ( ( 𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷 ) → ∃ 𝑓𝑤 ( 𝑓 Fn 𝑛𝜑𝜓 ) ) )
29 25 28 bitr3i ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → ( 𝑛𝐷 → ∃ 𝑓𝑤 ( 𝑓 Fn 𝑛𝜑𝜓 ) ) ) ↔ ( ( 𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷 ) → ∃ 𝑓𝑤 ( 𝑓 Fn 𝑛𝜑𝜓 ) ) )
30 29 albii ( ∀ 𝑛 ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → ( 𝑛𝐷 → ∃ 𝑓𝑤 ( 𝑓 Fn 𝑛𝜑𝜓 ) ) ) ↔ ∀ 𝑛 ( ( 𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷 ) → ∃ 𝑓𝑤 ( 𝑓 Fn 𝑛𝜑𝜓 ) ) )
31 30 exbii ( ∃ 𝑤𝑛 ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → ( 𝑛𝐷 → ∃ 𝑓𝑤 ( 𝑓 Fn 𝑛𝜑𝜓 ) ) ) ↔ ∃ 𝑤𝑛 ( ( 𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷 ) → ∃ 𝑓𝑤 ( 𝑓 Fn 𝑛𝜑𝜓 ) ) )
32 24 31 bitri ( ∃ 𝑤 ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → ∀ 𝑛𝐷𝑓𝑤 ( 𝑓 Fn 𝑛𝜑𝜓 ) ) ↔ ∃ 𝑤𝑛 ( ( 𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷 ) → ∃ 𝑓𝑤 ( 𝑓 Fn 𝑛𝜑𝜓 ) ) )
33 19 32 mpbi 𝑤𝑛 ( ( 𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷 ) → ∃ 𝑓𝑤 ( 𝑓 Fn 𝑛𝜑𝜓 ) )
34 4 bicomi ( ( 𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷 ) ↔ 𝜒 )
35 34 imbi1i ( ( ( 𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷 ) → ∃ 𝑓𝑤 ( 𝑓 Fn 𝑛𝜑𝜓 ) ) ↔ ( 𝜒 → ∃ 𝑓𝑤 ( 𝑓 Fn 𝑛𝜑𝜓 ) ) )
36 35 albii ( ∀ 𝑛 ( ( 𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷 ) → ∃ 𝑓𝑤 ( 𝑓 Fn 𝑛𝜑𝜓 ) ) ↔ ∀ 𝑛 ( 𝜒 → ∃ 𝑓𝑤 ( 𝑓 Fn 𝑛𝜑𝜓 ) ) )
37 36 exbii ( ∃ 𝑤𝑛 ( ( 𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷 ) → ∃ 𝑓𝑤 ( 𝑓 Fn 𝑛𝜑𝜓 ) ) ↔ ∃ 𝑤𝑛 ( 𝜒 → ∃ 𝑓𝑤 ( 𝑓 Fn 𝑛𝜑𝜓 ) ) )
38 33 37 mpbi 𝑤𝑛 ( 𝜒 → ∃ 𝑓𝑤 ( 𝑓 Fn 𝑛𝜑𝜓 ) )
39 5 rexbii ( ∃ 𝑓𝑤 𝜃 ↔ ∃ 𝑓𝑤 ( 𝑓 Fn 𝑛𝜑𝜓 ) )
40 39 imbi2i ( ( 𝜒 → ∃ 𝑓𝑤 𝜃 ) ↔ ( 𝜒 → ∃ 𝑓𝑤 ( 𝑓 Fn 𝑛𝜑𝜓 ) ) )
41 40 albii ( ∀ 𝑛 ( 𝜒 → ∃ 𝑓𝑤 𝜃 ) ↔ ∀ 𝑛 ( 𝜒 → ∃ 𝑓𝑤 ( 𝑓 Fn 𝑛𝜑𝜓 ) ) )
42 41 exbii ( ∃ 𝑤𝑛 ( 𝜒 → ∃ 𝑓𝑤 𝜃 ) ↔ ∃ 𝑤𝑛 ( 𝜒 → ∃ 𝑓𝑤 ( 𝑓 Fn 𝑛𝜑𝜓 ) ) )
43 38 42 mpbir 𝑤𝑛 ( 𝜒 → ∃ 𝑓𝑤 𝜃 )