Metamath Proof Explorer


Theorem bnj907

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj907.1 φf=predXAR
bnj907.2 ψiωsucinfsuci=yfipredyAR
bnj907.3 χnDfFnnφψ
bnj907.4 θRFrSeAXAytrClXARzpredyAR
bnj907.5 τmωn=sucmp=sucn
bnj907.6 ηinyfi
bnj907.7 No typesetting found for |- ( ph' <-> [. p / n ]. ph ) with typecode |-
bnj907.8 No typesetting found for |- ( ps' <-> [. p / n ]. ps ) with typecode |-
bnj907.9 No typesetting found for |- ( ch' <-> [. p / n ]. ch ) with typecode |-
bnj907.10 No typesetting found for |- ( ph" <-> [. G / f ]. ph' ) with typecode |-
bnj907.11 No typesetting found for |- ( ps" <-> [. G / f ]. ps' ) with typecode |-
bnj907.12 No typesetting found for |- ( ch" <-> [. G / f ]. ch' ) with typecode |-
bnj907.13 D=ω
bnj907.14 B=f|nDfFnnφψ
bnj907.15 C=yfmpredyAR
bnj907.16 G=fnC
Assertion bnj907 RFrSeAXATrFotrClXARAR

Proof

Step Hyp Ref Expression
1 bnj907.1 φf=predXAR
2 bnj907.2 ψiωsucinfsuci=yfipredyAR
3 bnj907.3 χnDfFnnφψ
4 bnj907.4 θRFrSeAXAytrClXARzpredyAR
5 bnj907.5 τmωn=sucmp=sucn
6 bnj907.6 ηinyfi
7 bnj907.7 Could not format ( ph' <-> [. p / n ]. ph ) : No typesetting found for |- ( ph' <-> [. p / n ]. ph ) with typecode |-
8 bnj907.8 Could not format ( ps' <-> [. p / n ]. ps ) : No typesetting found for |- ( ps' <-> [. p / n ]. ps ) with typecode |-
9 bnj907.9 Could not format ( ch' <-> [. p / n ]. ch ) : No typesetting found for |- ( ch' <-> [. p / n ]. ch ) with typecode |-
10 bnj907.10 Could not format ( ph" <-> [. G / f ]. ph' ) : No typesetting found for |- ( ph" <-> [. G / f ]. ph' ) with typecode |-
11 bnj907.11 Could not format ( ps" <-> [. G / f ]. ps' ) : No typesetting found for |- ( ps" <-> [. G / f ]. ps' ) with typecode |-
12 bnj907.12 Could not format ( ch" <-> [. G / f ]. ch' ) : No typesetting found for |- ( ch" <-> [. G / f ]. ch' ) with typecode |-
13 bnj907.13 D=ω
14 bnj907.14 B=f|nDfFnnφψ
15 bnj907.15 C=yfmpredyAR
16 bnj907.16 G=fnC
17 1 2 3 4 5 6 13 14 bnj1021 fnimθθχηpτ
18 vex pV
19 3 7 8 9 18 bnj919 Could not format ( ch' <-> ( p e. D /\ f Fn p /\ ph' /\ ps' ) ) : No typesetting found for |- ( ch' <-> ( p e. D /\ f Fn p /\ ph' /\ ps' ) ) with typecode |-
20 16 bnj918 GV
21 19 10 11 12 20 bnj976 Could not format ( ch" <-> ( p e. D /\ G Fn p /\ ph" /\ ps" ) ) : No typesetting found for |- ( ch" <-> ( p e. D /\ G Fn p /\ ph" /\ ps" ) ) with typecode |-
22 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 21 bnj1020 θχηpτpredyARtrClXAR
23 22 ax-gen mθχηpτpredyARtrClXAR
24 19.29r mθθχηpτmθχηpτpredyARtrClXARmθθχηpτθχηpτpredyARtrClXAR
25 pm3.33 θθχηpτθχηpτpredyARtrClXARθpredyARtrClXAR
26 24 25 bnj593 mθθχηpτmθχηpτpredyARtrClXARmθpredyARtrClXAR
27 23 26 mpan2 mθθχηpτmθpredyARtrClXAR
28 27 2eximi nimθθχηpτnimθpredyARtrClXAR
29 17 28 bnj101 fnimθpredyARtrClXAR
30 19.9v fnimθpredyARtrClXARnimθpredyARtrClXAR
31 29 30 mpbi nimθpredyARtrClXAR
32 19.9v nimθpredyARtrClXARimθpredyARtrClXAR
33 31 32 mpbi imθpredyARtrClXAR
34 19.9v imθpredyARtrClXARmθpredyARtrClXAR
35 33 34 mpbi mθpredyARtrClXAR
36 19.9v mθpredyARtrClXARθpredyARtrClXAR
37 35 36 mpbi θpredyARtrClXAR
38 4 bnj1254 θzpredyAR
39 37 38 sseldd θztrClXAR
40 4 39 bnj978 RFrSeAXATrFotrClXARAR