Metamath Proof Explorer


Theorem bnj92

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj92.1 ψiωsucinfsuci=yfipredyAR
bnj92.2 ZV
Assertion bnj92 [˙Z/n]˙ψiωsuciZfsuci=yfipredyAR

Proof

Step Hyp Ref Expression
1 bnj92.1 ψiωsucinfsuci=yfipredyAR
2 bnj92.2 ZV
3 1 sbcbii [˙Z/n]˙ψ[˙Z/n]˙iωsucinfsuci=yfipredyAR
4 2 bnj538 [˙Z/n]˙iωsucinfsuci=yfipredyARiω[˙Z/n]˙sucinfsuci=yfipredyAR
5 sbcimg ZV[˙Z/n]˙sucinfsuci=yfipredyAR[˙Z/n]˙sucin[˙Z/n]˙fsuci=yfipredyAR
6 2 5 ax-mp [˙Z/n]˙sucinfsuci=yfipredyAR[˙Z/n]˙sucin[˙Z/n]˙fsuci=yfipredyAR
7 sbcel2gv ZV[˙Z/n]˙sucinsuciZ
8 2 7 ax-mp [˙Z/n]˙sucinsuciZ
9 2 bnj525 [˙Z/n]˙fsuci=yfipredyARfsuci=yfipredyAR
10 8 9 imbi12i [˙Z/n]˙sucin[˙Z/n]˙fsuci=yfipredyARsuciZfsuci=yfipredyAR
11 6 10 bitri [˙Z/n]˙sucinfsuci=yfipredyARsuciZfsuci=yfipredyAR
12 11 ralbii iω[˙Z/n]˙sucinfsuci=yfipredyARiωsuciZfsuci=yfipredyAR
13 3 4 12 3bitri [˙Z/n]˙ψiωsuciZfsuci=yfipredyAR