Metamath Proof Explorer


Theorem bnj984

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj984.3 χnDfFnnφψ
bnj984.11 B=f|nDfFnnφψ
Assertion bnj984 GAGB[˙G/f]˙nχ

Proof

Step Hyp Ref Expression
1 bnj984.3 χnDfFnnφψ
2 bnj984.11 B=f|nDfFnnφψ
3 2 eleq2i GBGf|nDfFnnφψ
4 sbc8g GA[˙G/f]˙nDfFnnφψGf|nDfFnnφψ
5 3 4 bitr4id GAGB[˙G/f]˙nDfFnnφψ
6 df-rex nDfFnnφψnnDfFnnφψ
7 bnj252 nDfFnnφψnDfFnnφψ
8 1 7 bitri χnDfFnnφψ
9 6 8 bnj133 nDfFnnφψnχ
10 9 sbcbii [˙G/f]˙nDfFnnφψ[˙G/f]˙nχ
11 5 10 bitrdi GAGB[˙G/f]˙nχ