Metamath Proof Explorer


Theorem br1cossinidres

Description: B and C are cosets by an intersection with the restricted identity class: a binary relation. (Contributed by Peter Mazsa, 31-Dec-2021)

Ref Expression
Assertion br1cossinidres BVCWBRIACuAu=BuRBu=CuRC

Proof

Step Hyp Ref Expression
1 br1cossinres BVCWBRIACuAuIBuRBuICuRC
2 ideq2 uVuIBu=B
3 2 elv uIBu=B
4 3 anbi1i uIBuRBu=BuRB
5 ideq2 uVuICu=C
6 5 elv uICu=C
7 6 anbi1i uICuRCu=CuRC
8 4 7 anbi12i uIBuRBuICuRCu=BuRBu=CuRC
9 8 rexbii uAuIBuRBuICuRCuAu=BuRBu=CuRC
10 1 9 bitrdi BVCWBRIACuAu=BuRBu=CuRC