Metamath Proof Explorer


Theorem br1steqg

Description: Uniqueness condition for the binary relation 1st . (Contributed by Scott Fenton, 2-Jul-2020) Revised to remove sethood hypothesis on C . (Revised by Peter Mazsa, 17-Jan-2022)

Ref Expression
Assertion br1steqg AVBWAB1stCC=A

Proof

Step Hyp Ref Expression
1 op1stg AVBW1stAB=A
2 1 eqeq1d AVBW1stAB=CA=C
3 fo1st 1st:VontoV
4 fofn 1st:VontoV1stFnV
5 3 4 ax-mp 1stFnV
6 opex ABV
7 fnbrfvb 1stFnVABV1stAB=CAB1stC
8 5 6 7 mp2an 1stAB=CAB1stC
9 eqcom A=CC=A
10 2 8 9 3bitr3g AVBWAB1stCC=A