Metamath Proof Explorer


Theorem braadd

Description: Linearity property of bra for addition. (Contributed by NM, 23-May-2006) (New usage is discouraged.)

Ref Expression
Assertion braadd ABCbraAB+C=braAB+braAC

Proof

Step Hyp Ref Expression
1 ax-his2 BCAB+CihA=BihA+CihA
2 1 3comr ABCB+CihA=BihA+CihA
3 hvaddcl BCB+C
4 braval AB+CbraAB+C=B+CihA
5 3 4 sylan2 ABCbraAB+C=B+CihA
6 5 3impb ABCbraAB+C=B+CihA
7 braval ABbraAB=BihA
8 7 3adant3 ABCbraAB=BihA
9 braval ACbraAC=CihA
10 9 3adant2 ABCbraAC=CihA
11 8 10 oveq12d ABCbraAB+braAC=BihA+CihA
12 2 6 11 3eqtr4d ABCbraAB+C=braAB+braAC