Metamath Proof Explorer


Theorem brabga

Description: The law of concretion for a binary relation. (Contributed by Mario Carneiro, 19-Dec-2013)

Ref Expression
Hypotheses opelopabga.1 x=Ay=Bφψ
brabga.2 R=xy|φ
Assertion brabga AVBWARBψ

Proof

Step Hyp Ref Expression
1 opelopabga.1 x=Ay=Bφψ
2 brabga.2 R=xy|φ
3 df-br ARBABR
4 2 eleq2i ABRABxy|φ
5 3 4 bitri ARBABxy|φ
6 1 opelopabga AVBWABxy|φψ
7 5 6 bitrid AVBWARBψ