Metamath Proof Explorer


Theorem brabgaf

Description: The law of concretion for a binary relation. (Contributed by Mario Carneiro, 19-Dec-2013) (Revised by Thierry Arnoux, 17-May-2020)

Ref Expression
Hypotheses brabgaf.0 xψ
brabgaf.1 x=Ay=Bφψ
brabgaf.2 R=xy|φ
Assertion brabgaf AVBWARBψ

Proof

Step Hyp Ref Expression
1 brabgaf.0 xψ
2 brabgaf.1 x=Ay=Bφψ
3 brabgaf.2 R=xy|φ
4 df-br ARBABR
5 3 eleq2i ABRABxy|φ
6 4 5 bitri ARBABxy|φ
7 elopab ABxy|φxyAB=xyφ
8 elisset AVxx=A
9 elisset BWyy=B
10 exdistrv xyx=Ay=Bxx=Ayy=B
11 nfe1 xxyAB=xyφ
12 11 1 nfbi xxyAB=xyφψ
13 nfe1 yyAB=xyφ
14 13 nfex yxyAB=xyφ
15 nfv yψ
16 14 15 nfbi yxyAB=xyφψ
17 opeq12 x=Ay=Bxy=AB
18 copsexgw AB=xyφxyAB=xyφ
19 18 eqcoms xy=ABφxyAB=xyφ
20 17 19 syl x=Ay=BφxyAB=xyφ
21 20 2 bitr3d x=Ay=BxyAB=xyφψ
22 16 21 exlimi yx=Ay=BxyAB=xyφψ
23 12 22 exlimi xyx=Ay=BxyAB=xyφψ
24 10 23 sylbir xx=Ayy=BxyAB=xyφψ
25 8 9 24 syl2an AVBWxyAB=xyφψ
26 7 25 bitrid AVBWABxy|φψ
27 6 26 bitrid AVBWARBψ