Metamath Proof Explorer


Theorem brabidga

Description: The law of concretion for a binary relation. Special case of brabga . Usage of this theorem is discouraged because it depends on ax-13 , see brabidgaw for a weaker version that does not require it. (Contributed by Peter Mazsa, 24-Nov-2018) (New usage is discouraged.)

Ref Expression
Hypothesis brabidga.1 R = x y | φ
Assertion brabidga x R y φ

Proof

Step Hyp Ref Expression
1 brabidga.1 R = x y | φ
2 1 breqi x R y x x y | φ y
3 df-br x x y | φ y x y x y | φ
4 opabid x y x y | φ φ
5 2 3 4 3bitri x R y φ