Metamath Proof Explorer


Theorem breldmd

Description: Membership of first of a binary relation in a domain. (Contributed by Glauco Siliprandi, 23-Apr-2023)

Ref Expression
Hypotheses breldmd.1 φAC
breldmd.2 φBD
breldmd.3 φARB
Assertion breldmd φAdomR

Proof

Step Hyp Ref Expression
1 breldmd.1 φAC
2 breldmd.2 φBD
3 breldmd.3 φARB
4 breldmg ACBDARBAdomR
5 1 2 3 4 syl3anc φAdomR