Metamath Proof Explorer


Theorem brfullfun

Description: A binary relation form condition for the full function. (Contributed by Scott Fenton, 17-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Hypotheses brfullfun.1 AV
brfullfun.2 BV
Assertion brfullfun A𝖥𝗎𝗅𝗅𝖥𝗎𝗇FBB=FA

Proof

Step Hyp Ref Expression
1 brfullfun.1 AV
2 brfullfun.2 BV
3 eqcom 𝖥𝗎𝗅𝗅𝖥𝗎𝗇FA=BB=𝖥𝗎𝗅𝗅𝖥𝗎𝗇FA
4 fullfunfnv 𝖥𝗎𝗅𝗅𝖥𝗎𝗇FFnV
5 fnbrfvb 𝖥𝗎𝗅𝗅𝖥𝗎𝗇FFnVAV𝖥𝗎𝗅𝗅𝖥𝗎𝗇FA=BA𝖥𝗎𝗅𝗅𝖥𝗎𝗇FB
6 4 1 5 mp2an 𝖥𝗎𝗅𝗅𝖥𝗎𝗇FA=BA𝖥𝗎𝗅𝗅𝖥𝗎𝗇FB
7 fullfunfv 𝖥𝗎𝗅𝗅𝖥𝗎𝗇FA=FA
8 7 eqeq2i B=𝖥𝗎𝗅𝗅𝖥𝗎𝗇FAB=FA
9 3 6 8 3bitr3i A𝖥𝗎𝗅𝗅𝖥𝗎𝗇FBB=FA