Metamath Proof Explorer


Theorem brfvopabrbr

Description: The binary relation of a function value which is an ordered-pair class abstraction of a restricted binary relation is the restricted binary relation. The first hypothesis can often be obtained by using fvmptopab . (Contributed by AV, 29-Oct-2021)

Ref Expression
Hypotheses brfvopabrbr.1 AZ=xy|xBZyφ
brfvopabrbr.2 x=Xy=Yφψ
brfvopabrbr.3 RelBZ
Assertion brfvopabrbr XAZYXBZYψ

Proof

Step Hyp Ref Expression
1 brfvopabrbr.1 AZ=xy|xBZyφ
2 brfvopabrbr.2 x=Xy=Yφψ
3 brfvopabrbr.3 RelBZ
4 brne0 XAZYAZ
5 fvprc ¬ZVAZ=
6 5 necon1ai AZZV
7 4 6 syl XAZYZV
8 1 relopabiv RelAZ
9 8 brrelex1i XAZYXV
10 8 brrelex2i XAZYYV
11 7 9 10 3jca XAZYZVXVYV
12 brne0 XBZYBZ
13 fvprc ¬ZVBZ=
14 13 necon1ai BZZV
15 12 14 syl XBZYZV
16 3 brrelex1i XBZYXV
17 3 brrelex2i XBZYYV
18 15 16 17 3jca XBZYZVXVYV
19 18 adantr XBZYψZVXVYV
20 1 a1i ZVAZ=xy|xBZyφ
21 20 2 rbropap ZVXVYVXAZYXBZYψ
22 11 19 21 pm5.21nii XAZYXBZYψ